
 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 1 -

CHAPTER

1
INTRODUCTION

 The project Universal Serial Bus (USB) Data Logger is undertaken as a Final

Year Project of Bachelor of Engineering (B.E.) course in Electronics Engineering

department of Vivekanand Education Society’s Institute of Technology (V.E.S.I.T.),

Chembur, Mumbai. The project finds application in the High Energy Physics

Department of Tata Institute of Fundamental Research (T.I.F.R.), Mumbai.

 The project, as the name suggests is a general Data Acquisition System. The data

or more precisely the analog signal is generated by 8 analog sources which are referred

in the project as channels. The analog signal is converted to equivalent digital signal by

using Analog to Digital Converter (ADC). The digital data is transmitted to the computer

through USB Port for the purpose of monitoring.

 The project involves development in three major areas which are as follows:

 THE PERIPHERAL HARDWARE:

The hardware at the Peripheral side must include intelligent systems in order to

perform its intended duties dictated by the Specification. Hence an Embedded controller

(Microcontroller) with USB capability or Serial Interface Engine (SIE) needs to be used

that will take care of the requests from the host and interpret the received information in

a usable form in order perform any predefined function such transmitting the

information to some other device or control a real time application.

 THE PERIPHERAL SOFTWARE:

The Embedded controller is a piece of junk without its firmware which is truly

the intelligence of the device. The firmware detects the communication targeted towards

it from the host and responds with the necessary information. The functionality of the

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 2 -

peripheral hardware is strongly determined by the firmware which is required

throughout the operation of the system; hence, the firmware is stored in the relatively

permanent memory (EPROM, EEPROM, Flash memory). As it the code that hardly

changes (it is Firm), it is aptly called Firmware.

 THE HOST COMPUTER SOFTWARE:

The software residing with the host computer (also referred as the device driver

with an application program) must ensure that the Operating System knows how to

communicate with the device which has been detected and to manage the data flow over

the bus with additional duties assigned by the Specification (such as error checking).

Under Windows, any communication with a USB peripheral must pass through a device

driver that knows how to communicate both with the systems USB drivers and with the

applications that access the device.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 3 -

CHAPTER

2
PROBLEM DEFINITION

 It was assumed that there are 8 channels generating analogue signal which needs

to be converted from analogue form to digital form and to be transmitted to the host

computer over USB port. The analogue signal is assumed to be available at the input

connector of the board, which is in the range of 0 to 5 Volts with proper signal

conditioning; so that there is no need of signal conditioning. Also the signal generation

is not very rapid and input is slowly varying signal. Hence, the sampling of data need

not be very fast and low sampling frequency can be employed.

 An application when executed needs to display the status of each channel in a

window on the host computer for the monitoring purposes. It was assumed that the

value displayed for each channel should be a decimal value equivalent to the 8 bit binary

data which is proportional to analogue signal value at the sampling instant. There should

be 8 boxes with facility to clear the values in the boxes. The status of USB port to which

the device is attached has to be shown in a box while providing facility to search the

device according to the description, serial number as well as the device number and/or

to display above mentioned parameters for the selected port. An extra facility needs to

be given in order to log the data values of each channel in a text file from a given time

instance for a specific duration. A Refresh button has to be provided in the application

window so that fresh value or the current status of the channel is displayed. And lastly,

an exit button should be provided in order to terminate the execution of application

program to stop monitoring the channels.

 The system that is to be designed has to perform only the monitoring action with

no need of feedback control. The system is naturally a measurement system and not a

closed loop control system; hence, is a stable system.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 4 -

CHAPTER

3
SYSTEM PERSPECTIVE

The project, when viewed from system perspective can be broken into three

subsystems viz. host computer, Serial Interface Engine (SIE) and Microcontroller board

as shown below:

3.1 HOST COMPUTER

The Host Computer is a Personal Computer (PC) or other computer contains two

components: a host controller and a root hub. These work together to enable the

Operating system to communicate with the devices on the bus. The host controller

formats data for transmitting on the bus and translates received data to a format the

operating system components can understand. It also performs other functions related to

managing communication on the bus. The root hub has one or more connectors for

attaching devices. The root hub in combination with the host controller, detects the

PERIPHERAL SIDE

HOST
COMPUTER

USB DATA LOGGER – SYSTEM PERSPECTIVE

A
N
A
L
O
G

USB
PORT USB SERIAL

INTERFACE
ENGINE:

DLP2232M
MODULE

MICRO-
CONTROLLER

WITH ADC
BOARD

S
I
G
N
A
L

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 5 -

attachment and removal of devices, carries out request from the host controller, and

passes data between devices and the host controller.

The devices are the peripherals and additional hubs that connect to bus. A hub

has one or more ports for connecting devices. Each device must contain circuits and

code that knows how to communicate with the host. The specification defines the cables

and connectors that connect devices to hubs.

3.2 SERIAL INTERFACE ENGINE (SIE)

The DLP2232M Module developed by Don L. Powrie (DLP) works as a SIE. The

DLP-2232M utilizes Future Technology Devices International's (FTDI’s) third-

generation USB Universal Asynchronous Receiver Transmitter (UART) / First In First

Out (FIFO) I.C., the FT2232C. This low-cost development tool features two Multi-Purpose

UART/FIFO controllers that can be configured individually in several different modes.

A single downstream USB port is converted to two IO channels that can each be

individually configured as an UART interface, or a FIFO interface, without the need to

add a USB hub. There are also several new modes which can be enabled in the external

EEPROM, or by using Dynamic Link Library (DLL) driver commands. The FT2232C

driver also incorporates the functions defined for FTDI’s D2XX drivers, allowing

applications programmers to interface software directly to the device using a Windows

DLL.

3.3 MICROCONTROLLER BOARD

 The microcontroller board receives signals from eight analog sources as input to

8-channel Analog to Digital Converter (ADC). The ADC is interfaced with the

Microcontroller which initiates the conversion and monitors for the end of conversion.

Then write the digital values corresponding to the entire 8 channel signals into the

FT2232C FIFO RAM. The board also has a power supply circuit which powers the SIE

board and itself.

 Detailed description about these entities is followed in the subsequent chapters

with all the relevant information such as Software code and Integrated Circuits (IC)

datasheets given in the Appendix.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 6 -

CHAPTER

4
ENTITY PERSPECTIVE -

PERIPHERAL

From entity perspective, the peripheral side hardware can be separated into two

subsystems viz. the USB Serial Interface Engine (SIE) and Microcontroller board. The

communication between these two boards takes place on Request – Handshake basis.

4.1 SERIAL INTERFACE ENGINE (SIE)

The DLP-2232M module is a Single board, USB Dual Channel Serial / Parallel

Ports with a variety of configurations. A single downstream USB port is converted to

two IO channels that can each be individually configured as an UART interface, or a

FIFO interface, without the need to add a USB hub.

The DLP-2232M features a quality four-layer printed circuit board with a solid

ground plane, an integral 93C56 EEPROM on board for easy OEM customization and a

standard 40-pin, 0.6in wide footprint. Integral power control and on-board MOSFET

power switch make the DLP-2232M a perfect choice for USB bus-powered, high-power

designs as well as self- and low-powered products.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 7 -

There are also several new modes which can be enabled in the external

EEPROM, or by using DLL driver commands. These include Synchronous Bit-Bang

Mode, a CPU-Style FIFO Interface Mode, a Multi-Protocol Synchronous Serial Engine

Interface Mode, MCU Host Bus Emulation Mode, and Fast Opto-Isolated Serial

Interface Mode. Additionally, a new high output drive level option means that the

device UART / FIFO IO pins will drive out at around three times the normal power

level, allowing the data bus to be shared by several devices.

Classic BM-style Asynchronous Bit-Bang Mode is also supported, but has been

enhanced to give the user access to the device’s internal RD# and WR# strobes. FTDI

provides a royalty free Virtual Com Port (VCP) driver that makes the peripheral ports

look like a standard COM port to the PC. Most existing software applications should be

able interface with the Virtual Com Port simply by reconfiguring them to use the new

ports created by the driver. Using the VCP drivers, an application programmer would

communicate with the device in exactly the same way as they would a regular PC COM

port - using the Windows VCOMM API calls or a COM port library.

The FT2232C driver also incorporates the functions defined for FTDI’s D2XX

drivers, allowing applications programmers to interface software directly to the device

using a Windows DLL.

The block diagram of the board and its description is as follows:

4.1.1 6MHz Oscillator

The 6MHz Oscillator cell generates a 6MHz reference clock input to the x8

Clock multiplier from an external 6MHz ceramic resonator.

4.1.2 Multi-Purpose UART / FIFO Controllers

The Multi-purpose UART / FIFO controllers handle the transfer of data between

the Dual Port RX and TX buffers and the UART / FIFO transmit and receive registers.

When configured as a UART it performs asynchronous 7/8 bit parallel to serial and

serial to parallel conversion of the data on the RS232 (RS422 and RS485) interface.

Control signals supported by UART mode include RTS, CTS, DSR, DTR, DCD and RI.

There are also transmitter enable control signal pins (TXDEN) provided to assist with

interfacing to RS485 transceivers. RTS/CTS, DSR/DTR and X-On/X-Off handshaking

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 8 -

options are also supported. Handshaking, where required, is handled in hardware to

ensure fast response times. The UARTs also support the RS232 BREAK setting and

detection conditions.

4.1.3 EEPROM Interface

The on-board 93C56 EEPROM allows each of the DLP-2232M module’s

channels to be independently configured as a serial UART (232 mode), or a parallel

FIFO (245 mode). The EEPROM is used to enable the CPU-style FIFO interface, and

Fast Opto-Isolated Serial interface modes. The EEPROM can also be used to customize

the USB VID, PID, Serial Number, Product Description Strings and Power Descriptor

value of the DLP-2232M for OEM applications. Other parameters controlled by the

EEPROM include Remote Wake Up, Isochronous Transfer Mode, Soft Pull Down on

Power-Off and USB 2.0 descriptor modes.

The schematic of the board is shown in Appendix A.1. The USB type B

connector can be inserted into the connector provided on the board. The 40 pin (20x2)

PCB connector is used to connect the board with the Microcontroller board.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 9 -

4.2 MICROCONTROLLER BOARD

This board consists of AT90C51 Microcontroller interfaced with 8 Channel

Analog to Digital Converter (ADC) ADC0808. The block diagram of the board and its

functional description is as shown below:

4.2.1 Microcontroller:

AT89C51 40 pin Microcontroller is used to control ADC and read data to

transfer it to the FT2232M chip’s FIFO RAM. This Microcontroller has four 8 bit ports,

hence total of 32 port lines. One of the ports (Port 0) is used as data bus between the

DLP2232M Module and the Microcontroller. The handshake signals for the DLP2232M

Module are generated from some of port 1 pins. The other port (Port 2) is configured as

data bus between the ADC0808 and Microcontroller with some lines from port 1 and

some from port 3 providing control signals for the ADC.

A
N
A
L
O
G

MICROCONTROLLER WITH ADC BOARD - BLOCK DIAGRAM

S
I
G
N
A
L

40 PIN
0.6 inch
HEADER

AT89C51
MICRO-

CONTROLLER

POWER
ON

RESET

ADC0808
8

CHANNEL
ADC

POWER

CLOCK
CIRCUIT

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 10 -

The Microcontroller initiates the Analog to Digital (A to D) conversion and selects

appropriate channel using address lines. It also provides the clock for the A to D

conversion and at the same time monitors for the End of Conversion. As soon as it

detects End of Conversion, it reads the digital data from ADC and store the status of the

channel data into its own RAM. The Microcontroller performs similar task for other

channels by incrementing the address by 1 in sequential manner. When all the 8

channels are read and data is ready Microcontroller strobes data into the DLP2232M

Module’s FIFO RAM so that it can be read by the PC through the Device Driver.

4.2.2 Analog to Digital Converter:

The ADC is 8 bit Microprocessor Compatible A/D Converters with 8-Channel

Multiplexer. The ADC0808 data acquisition component is a monolithic CMOS device

with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor

compatible control logic. The 8-bit A to D converter uses successive approximation as

the conversion technique. The converter features a high impedance chopper stabilized

comparator, a 256R voltage divider with analog switch tree and a successive

approximation register. The 8-channel multiplexer can directly access any of 8-single-

ended analog signals. The device eliminates the need for external zero and full-scale

adjustments. Easy interfacing to microprocessors is provided by the latched and decoded

multiplexer address inputs and latched TTL TRI-STATE® outputs.

4.2.3 Power circuit:

 Power circuit delivers a constant voltage of +5 V to the circuit. It can be

constructed from any traditional rectifier circuit followed by a suitable filter with an

appropriate voltage regulator. Or in some applications it can be directly connected to the

DC regulated Power Supply, readily available in laboratories.

4.2.4 Reset Circuit:

 The reset circuit is made up of two resistors, a capacitor & a switch. Upon

power-up the capacitor charges from 0V to the supply voltage but due to finite time

constant RC it takes some finite time for VC (voltage across capacitor) to rise above

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 11 -

0.8V. This voltage is given to the Reset input of the microcontroller; hence the

microcontroller gets reset when the power is just switched on & the voltage at the Reset

pin is below VOL level. But within a short span of time (5RC), VC reaches +5V so that

microcontroller can resume its normal operation. The circuit indeed works as a Power

on Reset circuit. The switch is provided to discharge the capacitor, so that the

microcontroller can be reset manually at any time.

4.2.5 Clock Circuit:

 The clock circuit consists of a Crystal Oscillator operating at a desired frequency

which generates clock signal with 50% duty cycle required by the microcontroller.

 The Microcontroller board schematic is given in Appendix A.2. The

firmware for the microcontroller is the intelligence of any embedded system. Hence, the

firmware is explained in next chapter while the actual code is given in Appendix C.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 12 -

CHAPTER

5
ENTITY PERSPECTIVE – FIRMWARE

 The firmware running on the Microcontroller enables the peripheral hardware to

perform its intended task. The firmware is continuous loop, which keeps on executing

indefinitely. The flowchart for the main program is given below:

START

Defining Port Bits

Initialize Control Signals

Clear Channel Pointer

Initialize Destination Pointer

Call Start Conversion Routine

Refresh Destination Pointer

Refresh Channel Pointer

AC B

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 13 -

 As seen, this the main program or Operating System code in Embedded Systems

terminology, which executes all the time as long as systems is powered. The main

program calls two subroutines viz. ‘Start Conversion’ and ‘Transmit Data’.

YES

YES

A

Are
8 Channels

Read?

C B

Initialize Data Counter

Call Transmit Data Routine

Refresh Data Counter

Is
End of Data

?

NO

NO

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 14 -

5.1 START CONVERSION ROUTINE

This subroutine initiates the Analog to Digital conversion process by making

appropriate signal line active while selecting an analog channel for conversion. The

clock waveform required for the ADC operation is generated while monitoring the End

of Conversion. As soon as the End of Conversion is detected, so that the digital data is

ready to be read by the Microcontroller, it stores the data value in scratchpad RAM area

of the Microcontroller.

YES

Initialize the ADC control signals

Select one of the 8 channels

Start the Conversion

RET

START

Generate Clock for ADC

End of
Conversion

?

NO

Store the data

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 15 -

5.2 TRANSMIT DATA ROUTINE

This subroutine transmits the digital data stored in scratch pad RAM area

pointed by the Destination pointer to the DLP2232M Module. The FT2232 SIE then

inserts the data received from the Microcontroller into its FIFO RAM.

The actual assembly language code for the firmware is given in Appendix C.

YES

NO

Initialize the Handshake Signals

START

Enable the Transmit Control signal

Transmit the Data

RET

Ready for
transmitting

Data?

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 16 -

CHAPTER

6
ENTITY PERSPECTIVE –

HOST COMPUTER

 From entity perspective, the host computer is a machine in which the software

code runs. For the USB system to work it is necessary that the host machine have a host

controller and root hub. The host computer allows software code to be executed in order

to perform the intended function. The software is basically used for monitoring the

various parameters like temperature, pressure, gas flow etc. The host computer reads the

contents from the FIFO RAM of the DLP USB 232 Kit which in turn reads the contents

from the Microcontroller 89C51. A programming language and development

environment on the host are thus required for writing and debugging the host software.

The host software may include a device driver and application code.

6.1 DEVICE DRIVER:

To write a device driver Visual C++, Visual Basic or Delphi are required, which

are capable of compiling the Win32 Driver Model (WDM) drivers needed for the USB

devices. Since we are using the FTDI USB chip FT2232C, writing the drivers is not a

major concern as royalty free drivers are provided by the chip itself. The drivers can run

in various operating systems such as Windows 98, Windows ME, Windows 2000,

Windows XP, Linux, Mac OS-X and Windows CE.Net. In the case of the FT2232C, the

driver type is selected by a setting in the EEPROM.

The drivers available on the FT2232C Device are VCP and D2XX drivers.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 17 -

6.1.1 VCP Drivers:

Virtual COM port (VCP) drivers cause the USB device to appear as an

additional COM port available to the PC. Application software can access the USB

device in the same way as it would access a standard COM port. In short, the VCP

driver emulates a standard PC serial port such that the USB device may be

communicated with as a standard RS232 device

6.1.2 D2XX Drivers:

D2XX drivers allow direct access to the USB device through DLL access.

Application software can access the USB device through a series of DLL function

calls. Thus, the D2XX driver allows direct access to a USB device via a DLL interface.

In our project, we are using D2XX drivers for writing the application programs

as FTDI’s "D2XX Direct Drivers" for Windows offer an alternative solution to VCP

drivers which allow application software to interface with FT2232C Dual USB

UART/FIFO using a DLL instead of a Virtual COM Port.

6.2 APPLICATION PROGRAMS

Application Programs are written in various languages like Visual C++, Visual

Basic, C++ Builder, Delphi etc. As a language platform, Visual C++ was selected

because of the following reasons:

 System I/O calls are provided

 Faster runtime which is essential when interacting with the hardware.

Apart from these, Visual C++ also provides good tools to create a DLL

The following flowchart shows how exactly customer’s application software

interacts with the FTDI USB device.

The architecture of the D2XX drivers consists of a Windows WDM driver that

communicates with the device via the Windows USB stack and a DLL which interfaces

the application software to the WDM driver.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 18 -

Hierarchical view of the System as a Software Entity

Application Software

C++ Builder
Delphi

LabView
Visual Basic
Visual C++

FTD2XX.DLL

FTD2XX.SYS

USB Driver Stack
Windows XP

Windows 2000
Windows ME
Windows 98

FTDI USB DEVICE

FT2232C
Dual USB UART / FIFO

Customer’s
Application

Software

Application / Software
Interface (D2XX)

FTDI Supplied DLL

FTDI WDM Driver
Interface

FTDI WDM Driver

Windows USB Interface

Windows USB
Drivers

USB Physical Layer

FTDI USB
Device

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 19 -

The FTD2XX Programming Guide includes the following functions through which the

contents of the device are accessed.

01. Classic Interface Functions : This explains general functions like Open, Read,

Write, Close, ResetDevice, SetTimeouts, ListDevices, SetBaudRate etc

02. EEPROM Interface Functions: This allow application software to read/program

the various fields in the EEPROM including the user defined area which can be

used for application purposes.

03. Extended API Functions: This allows control of the additional features

04. FT-Win32 API Functions: This function is a sophisticated alternative to the

Classic interface. Using this function existing Windows legacy Communication

applications can be easily converted to use the D2XX interface by replacing the

standard Win32 API calls with the equivalent FT – Win32 API calls.

6.3 FTDI FUNCTIONS USED IN THE PROGRAM:

6.3.1 FT_ListDevices

Get information concerning the devices currently connected. This function can return

information such as the number of devices connected, the device serial number and

device description strings, and the location IDs of connected devices.

6.3.2 FT_Open

Open the device and return a handle which will be used for subsequent accesses.

6.3.3 FT_OpenEx

Open the specified device and return a handle that will be used for subsequent accesses.

The device can be specified by its serial number, device description or location.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 20 -

6.3.4 FT_Close
Close an open device

6.3.5 FT_Read

Read data from the device. This function does not return until no of bytes to be read are

read into the buffer.

6.3.6 FT_Write

Write data to the device. Read data from the device. This function does not return until

no of bytes to be written are written into the buffer.

6.3.7 FT_ResetDevice

Send a reset command to the device

6.3.8 FT_SetTimeouts

This function sets the read and write timeouts for the device.

6.3.9 FT_GetStatus

Gets the device status including number of characters in the receive queue, number of

characters in the transmit queue, and the current event status.

6.4 VISUAL C++

The application coding has been done in Visual C++ (VC++). Visual C++

incorporates a range of fully integrated tools designed to make the whole process of

writing Windows programs easy. The Integrated Development Environment that comes

with Visual C++ is a completely self contained environment for creating, compiling,

linking and testing Windows programs. The fundamental parts of Visual C++ include

the editor, the compiler, linker and the libraries. These are the basic tools that are

essential for writing and executing a C++ program.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 21 -

6.5 USB DATA LOGGER

The software as shown continuously monitors inputs from 8 different channels

and displays it in various boxes.

When the application is run from the VC++ workspace, the project code gets

compiled, linked and executable file is generated through which the application window

as shown below appears on the screen.

The window shown below is snapshot of the application window that appears

just after the application is run.

The software has options for

01. Searching the device

a) By Description

b) By Serial Number

c) By Device No.

02. Opening the device

03. Monitoring 8 different channels

04. Clearing the contents of received data

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 22 -

The following options can be explained in details as follows:

6.5.1 Searching the device

On Click of the Search Button and by selecting the appropriate radio button, the

device can be selected by either description, serial number or device number.

The Search button detects all FTDI devices connected to the USB bus and lists

each device by its description string, serial number or device number in the List box.

When the string is selected in the List box, it appears on the edit box of the search

button. The default value in the search edit box is “Enter the device description or serial

number here”.

6.5.1.1 By Description:

The Description radio button selection will cause the Search function to locate

all FTDI devices and present their description strings in the list box. The application

window snapshot for this option is shown below.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 23 -

This mode assumes that an EEPROM device is connected to the FTDI Chip and that a

description string has been written to the EEPROM device.

6.5.1.2 By Serial Number:

The Serial Number radio button selection will cause the Search function to

locate all FTDI devices and present their serial numbers in the list box. This mode

assumes that an EEPROM device is connected to the FTDI Chip and that a serial

number has been written to the EEPROM device.

The application window snapshot for this option is shown below.

6.5.1.3 By Device Number:

The Device Number radio button selection will cause the Search function to

locate all FTDI devices and present their device numbers in the list box. This mode

works without having an EEPROM device connected to the chip. It simply places a

device number in the list box for each FTDI Chip connected – in no particular order.

The application window snapshot for this option is shown below.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 24 -

For the code of these functions Refer to Appendix D.1.

6.5.2 Opening the device

On Click of the Open Button, the device in the search edit box is opened by

either description, serial number or device number

The Search edit box contains the description string, serial number or device

number of the device that will be opened when the Open button is clicked. The desired

device must be connected to the host PC or the Open function will report an error. The

open edit box contains the current status (Open or Closed) of the FTDI device attached

to the USB port.

For the code of these functions Refer to Appendix D.2.

6.5.3 Monitoring 8 different channels

On Click of the Open Button, the edit boxes corresponding to eight different

channels display the respective values.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 25 -

The channels are analog inputs from various transducers and signal conditioners.

The parameters are temperature, pressure, flow etc which are been continuously

monitored. The 8 edit boxes display the respective values i.e. data received from 8

different channels.

For the code of these functions Refer to Appendix D.3

6.5.4 Clearing the contents of received data

 On Click of the clear button, all data in the List box and in 8 different channels

are cleared.

 For the code of these functions Refer to Appendix D.3

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 26 -

CHAPTER

7
APPLICATIONS

The application of the USB Data Logger project is basically in the detection of

Resistive Plate Chamber (RPC) dark current monitoring.

The USB Data Logger project was designed so as to be used in the Department

of High Energy Physics at TIFR. The department conducts various experiments in the

field of neutrino physics.

7.1 NEUTRINO PHYSICS

Neutrinos are one of the fundamental particles, which make up the universe.

Neutrinos are electrically neutral and were initially thought to be mass less. There are

three types or flavors of neutrinos known. Recent evidences seem to indicate that

neutrinos not only have mass, but also experience mixing among these flavors. This

leads to the phenomena of neutrino oscillations that can explain the discrepancy

between theory and observations about its flux.

Historically, the Indian initiative in neutrino physics experiments goes back to

several decades. To exploit this valuable expertise for the emerging new area of

observational neutrino physics, an idea to construct a neutrino detector at an India-

based Neutrino Observatory (INO) was mooted a few years ago.

The proposed neutrino detector will use Glass Resistive Plate Chambers (glass

RPCs) as active detector elements. It will comprise of 140 layers of horizontally

arranged iron plates of 6cm thickness, interleaved with 2.5cm gap between successive

layers of iron plates to house the glass RPCs.

7.2 GLASS RPC - ACTIVE NEUTRINO DETECTOR

Glass RPCs are rugged and low-cost gas detectors which are being used or

planned for extensively in a number of high energy and astro-particle physics

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 27 -

experiments. They find applications for charged particle detection, time of flight,

tracking and digital calorimetry due to their large signal amplitudes as well as excellent

position and time resolutions. A dedicated R&D programme is currently under way to

develop and characterise these chambers, ultimately leading to their large scale

production required for the INO detector.

7.2.1 GLASS RPC – Construction and Working

Glass RPC is a gaseous detector composed of two parallel electrodes made up of float

glass The two electrodes, 2mm thick, are mounted 2mm apart by means of highly

insulated spacers. A suitable gas mixture is flown at the atmospheric pressure through

the gap while an appropriate electric field is applied across the glass electrodes through

a resistive coating on their outer surfaces. An ionising charged particle traversing the

gap, initiates a streamer in the gas volume that results in a local discharge of the

electrodes.

This discharge is limited to a tiny area due to the high resistivity of the glass

electrodes and the quenching characteristics of the gas. The discharge induces an

electrical signal on external pickup strips, which can be used to record the location and

time of ionisation. The discharge is quenched when all of the locally available charge is

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 28 -

consumed. The discharged area recharges slowly through the high-resistivity glass

plates. Typical signal amplitude is about 100-200mV across a 50Ohm load and its rise

time is less than a nanosecond.

 7.2.2 GLASS RPC: V- I Characteristics

Glass RPCs have a distinctive and readily understandable voltage versus current

relationship. At lower applied voltages, the chamber's gas gap offers very high

resistance, hence its V-I characteristic in this region is mainly characterised by the

insulative spacers placed between the electrodes. When the chamber starts operating in

the active region, resistivity of the glass electrodes alone determines its characteristics.

The V – I Characteristic is shown below.

7.2.3 Electrical Equivalent of RPC

It is essential to test all the glass RPCs which are mass produced to check

whether its I-V characteristics confirm to the above behaviour. It is also important to

monitor the high voltage and current through the RPC to make sure that the chamber is

operating in stable manner. In fact, monitoring the chamber current is the most effective

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 29 -

way to monitor stability of the chamber during its operation. The high voltage and

current of the chamber can be monitored using the monitor D.C voltage outputs

provided by the high voltage power suppy which is used to bias the chamber.

Hence, the USB Data Logger tends to be useful in the monitoring of dark current

through the RPC which in turn is a measure of the stability of the chamber.

Equally important is to monitor other ambient conditions of the lab in which

RPC detectors are being operated in. These include parameters such as temperature,

pressure, gas flow through the RPC etc.

Again, appropriate monitor D.C voltages from the transducers will be used to

monitor these parameters. Combined, the data logger will provide invaluable

information on the operating conditions of the RPCs and helps us analyse the data

produced by the RPC in a much better manner.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 30 -

CHAPTER

8
FUTURE DEVELOPMENTS

Apart from RPC dark current, temperature, pressure, gas flow and other

parameter monitoring, the designed project finds itself useful in a wide number of

applications. With few changes incorporated in the hardware and software, the project

can be implemented in various areas of interest.

 INSTRUMENTATION SYSTEMS:

 USB data logger as a data acquisition system can be used in various industries

for receiving the data from a real world process. In situations where it is necessary not

only to acquire and process data but also to send back to the real time process, we have a

data acquisition and control system. The following project is used only for monitoring

the data but can be also used as a closed loop system in control system applications with

some changes in the design.

 SERIAL COMMUNICATION:

The designed project makes entire utilization of the USB to Parallel port

conversion. As the project can be used to control any application on the peripheral side,

serial communication can also be implemented so as to interface any device lacking

USB port. Older (legacy) computers or laptops do not have provision of a USB port, so

designing a USB to RS232C converter can thus be very useful.

The serial port implementation is possible in 2 different ways:

 Using DLP USB Kit (Channel B)

DLP USB Kit has 2 Channels A and B which can be independently configured

as a serial or parallel port. By some sort of switching arrangement, it is possible to

directly interface a Sipex SP21EHCA or Maxim MAX232 IC to the channel B. The

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 31 -

Sipex SP21EHCA IC which is a TTL to RS232C converter can thus provide a serial

port at the output.

The schematic for the Serial Communication Interface for both ports of

FT2232C using Sipex SP21EHCA is shown in Appendix A.3

 Using Microcontroller AT89C51

Microcontroller 89C51 has 2 port pins Rxd and Txd for serial communication.

By using a single channel and eliminating the ADC at the output, serial signals can be

interfaced to MAX232 IC (TTL-RS232C Converter) thus providing the required RS232

signals at the output.

Finally, the designed project can be extended further to monitor n different

channels rather than 8 channels. This can be done by the addition of a multiplexer viz.

16:1, 32:1, 64:1 etc. Thus the range of the system can be extended so as to incorporate

wide range of input data.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 32 -

APPENDIX

A
SCHEMATICS

The Appendix contains the circuit diagrams of the boards mentioned in chapter 4 and 5

on the Entity Perspective – Peripheral. These are the schematics for the Peripheral side

hardware.

A.1 DLP2232M SERIAL INTERFACE ENGINE (SIE)

The schematic for this board is given here. The block diagram explanation of the

board is given in section 4.1 SERIAL INTERFACE ENGINE of chapter 4 ENTITY

PERSPECTIVE – PERIPHERAL.

A.2 MICROCONTROLLER BOARD
The schematic for this board is given here. The block diagram explanation of the

board is given in section 4.2 MICROCONTROLLER BOARD of chapter 4 ENTITY

PERSPECTIVE – PERIPHERAL.

A.2 SERIAL COMMINICATION (RS-232) BOARD
The schematic is proposed implementation of serial communication RS232

interface using Sipex SP21EHCA in the system so that the system can convert between

two standards USB and RS232.

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 33 -

APPENDIX A.1

SERIAL INTERFACE ENGINE (SIE) BOARD

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 34 -

APPENDIX A.2

MICROCNTROLLER BOARD

AD
2

AC
0

EX
TV

C
C

R
ST

O
U

T#

TX
D

C
LK

BC
0

BD
4

C
6

0.
1u

F

AC
2

BD
2

AD
O

AC
 IN

AD
0

PO
R

TV
C

C

R
ST

IN
#

D
3 1N

40
07

12

G
N

D

D
6 1N

40
07

12

AD
6

AC
 IN

G
N

D

G
N

D

JP
5

C
O

N
N

 P
C

B
2

1 2
1 2

AD
4

IN
T0

#

A2

U
3

LM
78

05
/T

O
1

3

2
VI

N

GND

VO
U

T

SI
/W

U
B

C
3

10
uF

G
N

D

AD
1

G
N

D

JP
2

C
O

N
N

 P
C

B
10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

VC
C

SI
/W

U
A

VC
C

IO
A

AC
2

BD
6

IN
T0

#
AC

1

Y
1

12
M

H
z

SW
4

R
ES

ET

AC
 IN

AC
3

BC
2

VC
C

IO
A

VC
C

U
2

AD
C

08
08

26 27 28 1 2 3 4 5 12 16 10 9 7

17 14 15 8 18 19 20 21 25 24 23 6 22

IN
0

IN
1

IN
2

IN
3

IN
4

IN
5

IN
6

IN
7

R
EF

+
R

EF
-

C
LK O
E

EO
C

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A0 A1 A2 ST
AR

T
AL

E

AC
1

BD
0

G
N

D
R

2
10

0E

U
1

AT
89

C
51

91819
29 30

311 2 3 4 5 6 7 8

21 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17

39 38 37 36 35 34 33 32

R
ST

XT
AL

2
XT

AL
1

PS
EN

AL
E/

PR
O

G

EA
/V

PP

P1
.0

P1
.1

P1
.2

P1
.3

P1
.4

P1
.5

P1
.6

P1
.7

P2
.0

/A
8

P2
.1

/A
9

P2
.2

/A
10

P2
.3

/A
11

P2
.4

/A
12

P2
.5

/A
13

P2
.6

/A
14

P2
.7

/A
15

P3
.0

/R
XD

P3
.1

/T
XD

P3
.2

/IN
TO

P3
.3

/IN
T1

P3
.4

/T
O

P3
.5

/T
1

P3
.6

/W
R

P3
.7

/R
D

P0
.0

/A
D

0
P0

.1
/A

D
1

P0
.2

/A
D

2
P0

.3
/A

D
3

P0
.4

/A
D

4
P0

.5
/A

D
5

P0
.6

/A
D

6
P0

.7
/A

D
7

BD
7

SI
/W

U
B

SI
/W

U
A

AC
 IN

VC
C

IO
B

G
N

D

JP
4

C
O

N
N

 P
C

B
2

1 2
1 2

VC
C

AD
4

VC
C

U
SB

R
1

8.
2K

BD
5

VC
C

BD
1

AD
6

AD
2

AD
7

AD
3

IN
T1

#

AD
3

C
1

27
pF

D
2 1N

40
07

12

AD
7

AC
0

C
4

22
00

uF

A1

VC
C

AD
5

A1
R

XD

D
4 1N

40
07

12

BC
1

VC
C

IO
B

AC
3

TX
D

G
N

D

JP
1

C
O

N
N

 P
C

B
20

x2

0807061 2 3 4 5 1009 12 11 13 1514 1716 18 2019

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 2137383940

0807061 2 3 4 5 1009 12 11 13 1514 1716 18 2019

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 2137383940

BD
3

AD
5

G
N

D

EX
TV

C
C

A2

G
N

D

A0

BC
3

C
2

27
pF

AD
1

R
XD

A0

JP
3

C
O

N
N

 P
C

B
6

1 2 3 4 5 6

1 2 3 4 5 6

VC
C

SW

C
LK

IN
T1

#

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 35 -

APPENDIX A.3

SERIAL COMMINICATION (RS-232) BOARD

R
TS

A
#

D
S

R
B

#

R
IB

TX
A

C
TS

A

S
K

T1
D

B
9M

5 9 4 8 3 7 2 6 1

10

C
TS

A

TX
LE

D
A

#

C
TS

B
#

C
TS

B
#

R
X

D
A

TA
A

D
2

LE
D

R
X

B

TX
D

A
TA

A

R
X

LE
D

A
#

V
C

C
U

S
B

R
4

1k
5

C
TS

B

V
C

C
U

S
B

C
10

0.
1u

F

C
TS

A
#

R
X

D
B

C
N

1
C

N
-U

S
B

1 2 3 4

5

TX
B

D
S

R
A

D
TR

B
#

C
16

0.
1u

F

V
C

C
22

32

C
7

10
0n

F

D
3

LE
D

Y
1

6M
H

z
C

R
Y

S
TA

L

D
S

R
A

R
IA

#

R
IA

D
TR

B

C
TS

A
#

D
TR

A
#

X
TI

N

R
TS

B
#

R
IB

#

C
11

0.
1u

F

R
TS

B
V

C
C

U
S

B

R
X

D
A

S
H

IE
LD

C
17

0.
1u

F

EE
C

S

TX
LE

D
A

#

C
8

33
nF

D
S

R
B

U
1

93
C

56

1 2 3 4

8 7 6 5

C
S

S
K

D
IN

D
O

U
T

V
C

C
N

C
N

C
G

N
D

TX
D

B

S
LE

EP
A

#

D
C

D
A

R
S

TO
U

T#

C
12

0.
1u

F

D
S

R
B

R
X

LE
D

B
#

C
1

10
nF

C
18

0.
1u

F

C
23

47
pF

S
LE

EP
B

#

D
4

LE
D

V
C

C
U

S
B

TX
D

A
TA

A

D
C

D
B

#

D
TR

A
#

R
IA

#

V
C

C
22

32

D
S

R
A

#

R
X

D
A

TA
B

V
C

C
22

32

FB
1

FB
1

2

R
TS

B

C
9

10
nF

R
7

22
0R

R
IB

R
5

10
k

S
H

IE
LD

S
H

IE
LD

TX
D

A

S
LE

EP
A

#

TX
LE

D
B

#

D
C

D
B

C
13

0.
1u

F

C
2

10
0n

F

EE
S

K

C
19

0.
1u

F

R
X

D
A

TA
B

TX
D

A
TA

B

C
5

33
nF

R
8

22
0R

R
6

2k
2

TX
D

A

D
S

R
B

#

TX
LE

D
B

#

D
C

D
B

#

C
14

0.
1u

F

C
3

10
uF

C
20

0.
1u

F

R
IB

#

R
2

27
R

R
X

LE
D

A
#

R
9

22
0R

R
IA

R
X

D
A

R
X

LE
D

B
#

D
TR

A

D
C

D
A

#

D
C

D
A

#

FB
2

FB

12

C
15

10
uF

D
TR

A

X
TO

U
T

R
X

D
B

R
1

47
0R

C
21

10
uF

V
C

C
U

S
B

TX
D

A
TA

B

R
3

27
R

D
S

R
A

#

R
10

22
0R

R
TS

A

D
C

D
B

U
4

FT
22

32
 (

 R
S

23
2

PI
N

O
U

T
)

5 44 4 48 1 2

45

9
18

476

46

42
3

8 7 43

24 23 22 21 20 19 17 16 15 13 12 11 10 40 39 38 37 36 35 33 32 30 29 28 27 26 41

25
3414

31

R
S

TO
U

T#

X
TO

U
T

R
ES

ET
#

EE
C

S

EE
S

K

EE
D

A
TA

AGND

GND
GND

TE
S

T

3V
3O

U
T

AVCC

VCC
VCC

U
S

B
D

M

U
S

B
D

P

X
TI

N

TX
D

A
R

X
D

A
R

TS
A

#
C

TS
A

#
D

TR
A

#
D

S
R

A
#

D
C

D
A

#
R

IA
#

TX
D

EN
A

S
LE

EP
A

#
R

X
LE

D
#

TX
LE

D
#

S
I/W

U
A

TX
D

B
R

X
D

B
R

TS
B

#
C

TS
B

#
D

TR
B

#
D

R
S

B
#

D
C

D
B

#
R

IB
#

TX
D

EN
B

#
S

LE
EP

B
#

R
X

LE
D

B
#

TX
LE

D
B

#

S
I/W

U
B

PW
R

EN
#

GND
GNDVCCIOA

VCCIOB
V

C
C

U
S

B

R
TS

A
#

EE
D

A
TA

U
2

S
P2

13
EH

C
A

7 6 20 21 9 4 27 23 18

2 3 1 28 8 5 26 22 19

25 24 13
17

12 14
15 16

10
11

T1
IN

T2
IN

T3
IN

T4
IN

R
1I

N
R

2I
N

R
3I

N
R

4I
N

R
5I

N

T1
O

U
T

T2
O

U
T

T3
O

U
T

T4
O

U
T

R
1O

U
T

R
2O

U
T

R
3O

U
T

R
4O

U
T

R
5O

U
T

S
H

D
N

#
EN V

+
V

-

C
1+

C
1-

C
2+ C
2-

G
N

D
V

C
C

D
C

D
A

C
TS

B

C
4

10
0n

F

F
T

22
32

 -
 2

 P
O

R
T

 U
S

B
 T

O
 R

S
23

2
C

O
N

V
E

R
T

E
R

R
X

D
A

TA
A

U
3

S
P2

13
EH

C
A

7 6 20 21 9 4 27 23 18

2 3 1 28 8 5 26 22 19

25 24 13
17

12 14
15 16

10
11

T1
IN

T2
IN

T3
IN

T4
IN

R
1I

N
R

2I
N

R
3I

N
R

4I
N

R
5I

N

T1
O

U
T

T2
O

U
T

T3
O

U
T

T4
O

U
T

R
1O

U
T

R
2O

U
T

R
3O

U
T

R
4O

U
T

R
5O

U
T

S
H

D
N

#
EN V

+
V

-

C
1+

C
1-

C
2+ C
2-

G
N

D
V

C
C

V
C

C
22

32

C
6

47
pF

R
TS

A

D
TR

B

D
TR

B
#

S
LE

EP
B

#

V
C

C
U

S
B

S
K

T2
D

B
9M

5 9 4 8 3 7 2 6 1

10

R
X

A

TX
D

B

C
22

47
pF

V
C

C
U

S
B

R
TS

B
#

D
1

LE
D

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 36 -

APPENDIX

B
MANUFACTURERS’ DATA SHEETS

 This appendix contains data sheets representative of Integrated Circuits (ICs)

used in the Peripheral Hardware circuits.

B.1 FT2232C Dual USB UART / FIFO I.C.

B.2 AT89C51 Microcontroller

B.3 ADC0808 8-Bit µP Compatible A/D Converters with 8-
Channel Multiplexer

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 37 -

APPENDIX B.1

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 38 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 39 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 40 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 41 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 42 -

APPENDIX B.2

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 43 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 44 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 45 -

APPENDIX B.3

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 46 -

Sipex SP21EHCA

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 47 -

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 48 -

APPENDIX

C
PERIPHERAL FIRMWARE CODE

;=====Equates for port bits interfaced to ADC0808's========

ADC_DATA EQU P2 ;digital data in port

ADC_OE BIT P3.7 ;output enable for ADC
ADC_SC BIT P3.4 ;start conversion
ADC_EOC BIT P3.6 ;end of conversion
ADC_ALE BIT P3.5 ;address latch enable
ADC_CLK BIT P1.7 ;clock signal for ADC

AD0 BIT P1.4 ;multiplexer channel
AD1 BIT P1.5 ;addressing
AD2 BIT P1.6

;=====Equates for port bits interfaced to DLP2232M Module==

USB_DATA EQU P0 ;usb data out port

RXF BIT P1.0 ;receive status signal
TXE BIT P1.1 ;transmit status signal
READ BIT P1.2 ;read control signal
WRITE BIT P1.3 ;write control signal

;=====Main program indefinite loop=========================

ORG 0
 jmp MAIN

MAIN: setb RXF ;initial state for
 setb TXE ;DLP2232M module
 setb READ ;interface signals
 clr WRITE

 clr ADC_OE
 clr ADC_ALE

 clr ADC_SC
 clr ADC_CLK
 mov r0,#07h ;channel counter
 mov r1,#50h ;destination pointer
 mov r2,#00h ;channel selection

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 49 -

CONVERSION: mov a,r2
 orl p1,a
 call START_CONV ;A/D conversion routine
 inc r1 ;refresh destination
 ;pointer
 mov a,#10h ;next channel address
 add a,r2 ;selection
 mov r2,a
 djnz r0,CONVERSION

 mov r0,#07h ;channel counter
 mov r1,#50h ;source pointer
TRANSMIT: call TRANSMIT_DATA ;data transmit routine
 mov a,#10h ;next channel address
 add a,r2 ;selection
 mov r2,a
 djnz r0,TRANSMIT
 jmp MAIN

;=====Subroutine for A to D conversion using ADC===========

START_CONV: mov ADC_DATA,#0ffh

clr ADC_OE ; hi Z output
 setb ADC_EOC
 setb ADC_ALE ;start conversion
 setb ADC_SC

 clr ADC_ALE
 clr ADC_SC

START_CLK: cpl ADC_CLK
 jnb ADC_EOC,START_CLK
 setb ADC_OE
 mov @r1,ADC_DATA
 clr ADC_OE
 ret

;=====Subroutine for transmitting data to DLP2232M Module==

TRANSMIT_DATA: setb TXE
HERE: jb TXE, HERE
 setb WR
 mov USB_DATA,@r1
 nop
 clr WR
 ret

END

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 50 -

APPENDIX

D
HOST COMPUTER SOFTWARE

D.1 Search Button Function for searching the device

void CUSBDemoDlg::OnButtonSearch()

{

Search for Descriptions or Serial Numbers depending on the current mode

 FT_STATUS ftStatus;

 DWORD numDevs;

 Close(); //must be closed to perform the ListDevices() function

 UpdateData(TRUE);

 m_PortStatus = ("DLP-USB1 Closed.");

 m_Search = ("");

 m_Received.ResetContent();

 UpdateData(FALSE);

 UpdateWindow();

 ftStatus = ListDevices(&numDevs, NULL, FT_LIST_NUMBER_ONLY);

 if(ftStatus == FT_OK)

 {

 FT_ListDevices OK, Show number of devices connected in list box

 CString str;

 str.Format("%d device(s) attached:", (int)numDevs);

 m_Received.AddString(str);

If current mode is open "by device #" then list device numbers

 if((m_SerDescr==2) && (numDevs>0))

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 51 -

 {for(DWORD d=0; d<numDevs; d++)

 {

 str.Format("%d", d);

 m_Received.AddString(str);

 }}

If current mode is open "by description" then list descriptions of all connected

devices

 if((m_SerDescr==0) && (numDevs>0))

 {

 ftStatus = ListDevices(&numDevs, NULL,

FT_LIST_NUMBER_ONLY);

 if(ftStatus == FT_OK)

 {

 char *BufPtrs[64]; // pointer to array of 64 pointers

 for(DWORD d=0; d<numDevs; d++)

 BufPtrs[d] = new char[64];

 BufPtrs[d] = NULL;

 ftStatus=ListDevices(BufPtrs,&numDevs,

FT_LIST_ALL|FT_OPEN_BY_DESCRIPTION);

 if (FT_SUCCESS(ftStatus))

 {

 for(DWORD u=0; u<numDevs; u++)

 {

 str.Format("%s", BufPtrs[u]);

 m_Received.AddString(str);

 }

 }

 else

 {

 str.Format("ListDevices failed");

 m_Received.AddString(str);

 }

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 52 -

}

 }

If current mode is open "by serial number" the list descriptions of all connected

devices

 if((m_SerDescr==1) && (numDevs>0))

 {

 ftStatus = ListDevices(&numDevs, NULL,

FT_LIST_NUMBER_ONLY);

 if(ftStatus == FT_OK)

 {

 char *BufPtrs[64]; // pointer to array of 64 pointers

 for(DWORD d=0; d<numDevs; d++)

 BufPtrs[d] = new char[64];

 BufPtrs[d] = NULL;

 ftStatus = ListDevices(BufPtrs, &numDevs,

FT_LIST_ALL|FT_OPEN_BY_SERIAL_NUMBER);

 if (FT_SUCCESS(ftStatus))

 {

 for(DWORD u=0; u<numDevs; u++)

 {

 str.Format("%s", BufPtrs[u]);

 m_Received.AddString(str);

 }

 }

 else

 {

 str.Format("ListDevices failed");

 m_Received.AddString(str);

 }

}

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 53 -

}

 else

 {

 FT_ListDevices failed

 AfxMessageBox("FT_ListDevices failed");

 }

}

D.2 Open Button Function for Opening the Device

void CUSBDemoDlg::OnButtonOpen()

{

 unsigned char txbuf[25], rxbuf[25];

 DWORD ret_bytes;

 UpdateData(TRUE);

 m_PortStatus = ("Reset");

 UpdateData(FALSE);

 UpdateWindow();

 Close();

Open the device

 FT_STATUS status = OpenBy();

 if(status>0)

 {

 m_PortStatus = ("Could not open DLP-USB1");

 board_present=0;

 }

 else

 {

 ResetDevice();

 Purge(FT_PURGE_RX || FT_PURGE_TX);

 ResetDevice();

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 54 -

Extend timeout while board finishes reset

 SetTimeouts(3000, 3000);

Test for presence of board

 txbuf[0] = 0x80;

 Write(txbuf, 8, &ret_bytes);

 Read(rxbuf, 8, &ret_bytes);

 if(ret_bytes==0)

 Read(rxbuf, 1, &ret_bytes);

 if(rxbuf[0] != 0x80)

 {

 m_PortStatus = ("DLP-USB2 not responding");

 int c = (int)rxbuf[0];

 CString str;

 str.Format(" (0x%.2X)", c);

 board_present=0;

 Close();

 }

 else

 {

 m_PortStatus = ("DLP-USB2 ready.");

 board_present=1;

Data to be split into various channels

 int c =(int)rxbuf[0];

 CString str;

 str.Format("(0x%.2X)",c);

 m_Ch0 = str;

 int c1 =(int)rxbuf[1];

 CString str1;

 str1.Format("(0x%.2X)",c1);

 m_Ch1 = str1;

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 55 -

 int c2 =(int)rxbuf[2];

 CString str2;

 str2.Format("(0x%.2X)",c2);

 m_Ch2 = str2;

 int c3 =(int)rxbuf[3];

 CString str3;

 str3.Format("(0x%.2X)",c3);

 m_Ch3 = str3;

 int c4 =(int)rxbuf[4];

 CString str4;

 str4.Format("(0x%.2X)",c4);

 m_Ch4 = str4;

 int c5 =(int)rxbuf[5];

 CString str5;

 str5.Format("(0x%.2X)",c5);

 m_Ch5 = str5;

 int c6 =(int)rxbuf[6];

 CString str6;

 str6.Format("(0x%.2X)",c6);

 m_Ch6 = str6;

 int c7 =(int)rxbuf[7];

 CString str7;

 str7.Format("(0x%.2X)",c7);

 m_Ch7 = str7;

 }

 }

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 56 -

 SetTimeouts(300, 300);

 UpdateData(FALSE);

 UpdateWindow();

}

FT_STATUS CUSBDemoDlg::OpenBy()

{

 UpdateData(TRUE);

 if(m_Search.Find("Enter device Description") > -1)

 {

Highlight the descriptor/serial number to draw attention...

 CEdit *pEdt;

 pEdt = (CEdit *)GetDlgItem(IDC_EDIT_SEARCH);

 pEdt->SetFocus();

 pEdt->SetSel(0, -1, FALSE);

 AfxMessageBox("You must enter a Device Description or Serial

Number.");

 return FT_DEVICE_NOT_OPENED;

 }

 FT_STATUS status;

 ULONG x=0;

 if(m_SerDescr==0)

 status = OpenEx((PVOID)(LPCTSTR)m_Search,

FT_OPEN_BY_DESCRIPTION);

 if(m_SerDescr==1)

 status = OpenEx((PVOID)(LPCTSTR)m_Search,

FT_OPEN_BY_SERIAL_NUMBER);

If open by device OR no method was selected

 if((m_SerDescr==2) || (m_SerDescr==-1)) {

Nothing entered - open default device 0

 if(m_Search.GetLength() < 1)

 {

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 57 -

Load default device 0

 status = Open((PVOID)x); }

 else

 {

 if(m_Search.GetLength() > 2) {

AfxMessageBox("Select a method to open or enter a valid device number (0-64).");

 return FT_DEVICE_NOT_OPENED;

 }

Convert string to decimal number and open(x)

 char str[3];

 strcpy(str, (LPCTSTR)m_Search);

 x = atoi(str);

 if((x<0) || (x>64))

 {

AfxMessageBox("Select a method to open or enter a valid device number (0-64).");

 return FT_DEVICE_NOT_OPENED;

 }

 status = Open((PVOID)x);

 }

 }

 return status;

}

D.3 Clear Button Function for clearing the contents of

list box and channel edit boxes

void CUSBDemoDlg::OnButtonClear()

{

 UpdateData(TRUE);

 m_Ch0 =" ";

 m_Ch1= " ";

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 58 -

 m_Ch2 =" ";

 m_Ch3= " ";

 m_Ch4 =" ";

 m_Ch5= " ";

 m_Ch6 =" ";

 m_Ch7= " ";

 m_Received.ResetContent();

 UpdateData(FALSE);

 UpdateWindow();

}

D.4 Exit Button Function

void CUSBDemoDlg::OnButtonExit()

{

 OnOK();

}

D.5 Description Radio Button Function

void CUSBDemoDlg::OnRadioDescription()

{

 CWinApp* pApp = AfxGetApp();

 pApp->WriteProfileInt("MyUSBTestAp", "SerDesc", 0);

 UpdateData(TRUE);

 m_Search = AfxGetApp()->GetProfileString("MyUSBTestAp", "DescString",

"Enter device Description or Serial Number here.");

 UpdateData(FALSE);

 UpdateWindow();

}

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 59 -

D.6 Serial Number Radio Button Function
void CUSBDemoDlg::OnRadioSernum()

{

 CWinApp* pApp = AfxGetApp();

 pApp->WriteProfileInt("MyUSBTestAp", "SerDesc", 1);

 UpdateData(TRUE);

 m_Search = AfxGetApp()->GetProfileString("MyUSBTestAp", "SerialString",

"Enter device Description or Serial Number here.");

 UpdateData(FALSE);

 UpdateWindow();

}

D.7 Device Number Radio Button Function
void CUSBDemoDlg::OnRadioDevno()

{

 CWinApp* pApp = AfxGetApp();

 pApp->WriteProfileInt("MyUSBTestAp", "SerDesc", 2);

 UpdateData(TRUE);

 m_Search = AfxGetApp()->GetProfileString("MyUSBTestAp", "DevNmbr",

"Enter device Description or Serial Number here.");

 UpdateData(FALSE);

 UpdateWindow();

}

 USB DATA LOGGER

B.E. ELECTRONICS ENGG. VESIT - 60 -

List of references:

Books:

 Axelson J. USB Complete, 2nd ed. Penram International Publishing (India).

 Hyde J. USB Design by Example, 2nd ed. Intel Press.

 Ayala, K. J. The 8051 Microcontroller Architecture, Programming and Applications.

2nd ed. Penram International Publishing (India).

 Predko, M. Programming and customizing the 8051 microcontroller. 1st ed. Tata

McGraw-Hill Publishing Company.

Websites:
 www.usb.org The USB Implementers Forum, Inc. (USB-IF)
 www.usbdeveloper.com/index.htm
 www.design-by-example.com
 www.epanorama.net/links/pc/index.html
 www.usbman.com/developer.htm
 www.Lvr.com
 www.ftdichip.com
 www.tifr.res.in
 www.dlpdesign.com/usb/
 www.cypress.com
 www.atmel.com
 www.semiconductors.philips.com
 www.nationalsemiconductor.com
 www.beyondlogic.org/usbnutshell/usb7.htm
 www.embedded.com/2000/0003/0003ia2.htm
 www.stmicroelectonics.com
 www.vesit.edu

