Tata Institute of Fundamental Research

National Centre of  the Government of India for Nuclear Science and Mathematics

Homi Bhabha Road, Colaba, Mumbai 400 005, INDIA

	Telephone: 215 2971/2979
	Telex: 011-83009 Code: TIFR IN

	Fax: 091-22-215 2110/2181
	Telegram: ZETESIS




May 19, 2002

This is to certify that the following students:

1. Atanu Sarkar

2. Sameer P.Shahakar
of Department of Computer Engineering, Mahatma Gandhi Mission’s College of Engineering and Technology, Kamothe, Navi Mumbai-410 209 have completed the project work entitled, DEVELOPMENT OF A DLL BASED DATA ACQUISITION SYSTEM FOR A DRIFT CHAMBER, in partial fulfillment of Bachelor of Engineering degree, University of Mumbai.

	Chairman,
	Scientific Officer(SE)

	Department of High Energy Physics
	Project Guide


Development of a DLL Based Data Acquisition System for a Drift Chamber

Project

Submitted in partial fulfillment of the requirements

for the degree of

BACHELOR OF ENGINEERING

by

ATANU SARKAR

SAMEER P. SHAHAKAR

Under the guidance of

Prof. D. K. Chitre

[image: image12.png][ D \atanT JugADif(T racker\bsna21 dat

4] om| 43|  eoa|  me| 10sa| 1267 147
28| 27| Tars| ie4s| 71| Ve7a| 1447 13wy
2788| ob77| oG o@s| 23| oooa|  ov17| o0my
Tom|  we0|  a072| ows| ome| om0 oe2| o
23| o415 oi3| od1| | oeba| okl oo
TE10| oe| 127 14ss| 44| 14D4| 1363 1327
86| oois| oiod| 203 24| V85| feen| 1470
77| 1734|1697 Tee0| 1628 Vee7| 1sb0| 1514

S| 0w o7l oer| oma| 2w tas| 712 1499
W[ 7| s sed| fom0| 11e6| iaie| 1428|154
R T e ) A e = =) R
To| mew| wi2| a1z 27m| oaa| 1wd| Tees| 117
5| owm| br|  7ep|  ww| 2| iaes| 1703|193
TE|0a| s Tom| Tam| 48 16| te2s| 12
Y6| | aoe| o7ad| oass| oist| e[ Tees| 1267
YE[ 12| 13e| Tmi| 13%| 1410 145| 1440|145
T7| | ozer| omes| fems| test| 14a2| 1233 109
YB[ eea] i7es| 1700 Tei6| 53| 1447| 1a3| 1279
Y8| fos7| 03| 07| 1906|110 vios|  1i11] 114

[Record No [Anode 1 [Anode 2[Anode 3 [Anode & [Anode 5|Anode 6[Anode 7 [Anode & j





DEPARTMENT OF COMPUTER ENGINEERING

MAHATMA GANDHI MISSION’S COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIVERSITY OF MUMBAI

[image: image2.jpg]



MAHATMA GANDHI MISSION’S 
COLLEGE OF ENGINEERING AND TECHNOLOGY,

KAMOTHE, NAVI MUMBAI-410209
Project Entitled

Development of a DLL based Data Acquisition System for a Drift Chamber
Submitted by: 
Atanu Sarkar

Sameer P. Shahakar

In partial fulfillment of the degree of B.E in Computer Engineering is approved by:

   Guide                                                                            Examiners

[image: image1.jpg]


[image: image5.png][ D \atanT JugADif(T racker\bsna21 dat

4] om| 43|  eoa|  me| 10sa| 1267 147
28| 27| Tars| ie4s| 71| Ve7a| 1447 13wy
2788| ob77| oG o@s| 23| oooa|  ov17| o0my
Tom|  we0|  a072| ows| ome| om0 oe2| o
23| o415 oi3| od1| | oeba| okl oo
TE10| oe| 127 14ss| 44| 14D4| 1363 1327
86| oois| oiod| 203 24| V85| feen| 1470
77| 1734|1697 Tee0| 1628 Vee7| 1sb0| 1514

S| 0w o7l oer| oma| 2w tas| 712 1499
W[ 7| s sed| fom0| 11e6| iaie| 1428|154
R T e ) A e = =) R
To| mew| wi2| a1z 27m| oaa| 1wd| Tees| 117
5| owm| br|  7ep|  ww| 2| iaes| 1703|193
TE|0a| s Tom| Tam| 48 16| te2s| 12
Y6| | aoe| o7ad| oass| oist| e[ Tees| 1267
YE[ 12| 13e| Tmi| 13%| 1410 145| 1440|145
T7| | ozer| omes| fems| test| 14a2| 1233 109
YB[ eea] i7es| 1700 Tei6| 53| 1447| 1a3| 1279
Y8| fos7| 03| 07| 1906|110 vios|  1i11] 114

[Record No [Anode 1 [Anode 2[Anode 3 [Anode & [Anode 5|Anode 6[Anode 7 [Anode & j





[image: image6.wmf][image: image7.wmf]
Head of the Department                                                  Principal 

Date :

Acknowledgements

We would like to take this as an opportunity to express our gratitude towards our guide Mr. B.Satyanarayana from the High Energy Cosmic Ray Group, Tata Institute of Fundamental Research, Mumbai and acknowledge the help received from him during the course of the project. Without his tireless efforts and encouragement it would have been difficult to complete the  project. We would also like to acknowledge the cooperation and help extended to us by other members of the HECR group, for providing us with adequate infrastructure and the right environment for our project development.

Also our sincere thanks to our internal guide Mr. D K Chitre and the whole staff of our Computer department for the constant help received from them.

Contents

Chapter 1
Introduction, 1

1.1 Institute Profile, 1

1.2 Drift Chamber Overview, 1

1.3 Project Scope, 2

Chapter 2
Drift Chamber, 3

2.1 Basic Principle, 3

2.2 Construction Details, 3

Chapter 3

System Hardware, 5

3.1 Interfacing Circuitry, 5

3.2 TDC Module, 5

3.3 ISA Interface Card, 9

Chapter 4
Software, 12


4.1 Specifications, 12


4.2 Design Considerations, 12


4.3 DLL, 14

Chapter 5
Dynamic Link Libraries, 15

5.1 Introduction to DLL, 15

5.2 Implicit and Explicit Linkage, 17

5.3 MFC Extension DLL and Regular DLL, 18

Chapter 6
System Design, 20

6.1 Modularisation of Software, 20

6.2 Data Flow Diagrams, 21

6.3 Working of DLL, 23

6.4 Working of Data Acquisition Software, 25

Chapter 7
Testing, 26

7.1 Verification of Hardware interface, 26

7.2 Testing of Software, 27

Chapter 8
Scope for Further Work, 30

Appendix A 
ISA Pin Study, 31

Appendix B 
FRC Pin Allocations, 34


Bibliography, 35

Chapter 1

Introduction
1. Introduction                                     Page 1
1.1 Institute Profile

1.2 Drift Chamber overview

1.3 Project Scope 

1.1 Institute Profile

This project has been carried out at the High Energy Cosmic Ray Group of the Tata Institute of Fundamental Research, Mumbai. TIFR is one of the premier institutions in the world where fundamental research of international standard is being carried out in Mathematics, Physics, Chemistry, Astronomy and Biological sciences.   The group where this work was carried out has a long history of conducting state-of-the-art particle physics experiments. The group had conducted a series of indigenously built neutrino, muon and proton decay experiments in the gold mines situated at Kolar Gold Fields. Subsequently, the group has moved over to the accelerator based particle physics experiments starting with DZERO experiment, which is being conducted at Fermilab, USA. The group is now also part of an Indian collaboration for participating in the Compact Muon Solenoid Experiment, which is being built at the CERN, Geneva. The group is currently proposing an Indian Neutrino Observatory which will be built in India with participation from many Indian groups and possibly even from abroad.  

1.2 Drift Chamber overview

The Drift Chamber is basically a small gas filled box. It is a detector which is used by particle physicists to detect and study properties of various sub- atomic particles. When a charged particle passes through this chamber, it leaves a track of electrical charge inside. Particles from this track are drifted under the influence of electric field and finally collected by the anode wires, situated near one face of the chamber. Essential parameters to be measured 

Page 2

in this detector are the arrival time of the particles at different anode wires with reference to a common timing signal, indicating the passage of the particle.

The signals are amplified and converted into logic signals. They are further processed by an Eight-channel ‘Time-to-Digital Converter (TDC)’ module which essentially counts the clock ticks between the common timing signal and individual anode signals.

An ISA standard PC interface board is designed to control and acquire data from the TDC module. The ISA card fits into the standard ISA slots in a PC. This card is used to communicate with the TDC module. 

1.3 Project Scope

The scope of this project is to develop a Data Acquisition System software for the drift chamber based on the hardware mentioned above.  An approach of developing the application software on a Dynamically Linked Library (DLL) layer has been adapted due to the reasons described in the following pages. Several considerations originated from the physicists and users of the drift chamber, such as various modes of the drift chamber operation, suiting to users of different interests and levels as well as possibility and scope for future modifications have influenced design of this software.

Chapter 2

Drift Chamber

2. Drift Chamber                                                   Page 3
2.1 Basic Principle

2.2 Construction Details

2.1 Basic Principle

The Drift Cell is defined at one end by a high voltage electrode and at the other end by the anode of a simple proportional counter. In order to create a constant electric field, a series of cathode filled wires individually held at appropriate voltages line the drift region. To signal the arrival of a particle, a scintillation counter covering the entire sensitive area is placed before or after the chamber. A particle traversing the chamber and scintillator, now, liberates electrons in the gas which then begin drifting towards the anode. At the same time, the fast signal from the scintillator starts a timer. The signal created at the anode as the drifting electrons arrive then stops the timer to yield the drift time.

While drift paths as long as 50 cm have been used by this simple structure, the usual drift region is about 5 – 10 cm. Shorter path lengths minimize the effect of diffusion and avoid the use of very high voltages. Considering typical drift velocities of about 5 cm / microsecond, this then yields drift times of 1 or 2 microseconds. This is also known as the memory time of the chamber. To cover a wider surface area, many adjacent drift cells can be used. Drift chambers several meters long have been constructed in this manner. To obtain several points on a track, several drift chambers with different wire orientations may also be stacked together. 

2.2 Construction Details

The central skeletal box of the drift chamber is of dimensions 303 mm X 166 mm X 156 mm and is made up of aluminum. From inside of this box, four 

Page 4

acrylic sheets each of dimension 300 mm X 150 mm X 3 mm thick are fitted on all four sides (excluding the two lateral faces). On each of these acrylic sheets, G-10 sheets carrying copper strips each of width 2 mm with a pitch of 3 mm are glued. These strips are joined by a series of resistors, which are used to generate uniform gradient of electric drift field. The four acrylic sheets are glued to each other on their lengths making an open rectangular box.  The copper strips interconnected this way form an array of fifty square shaped closed field wire loops. The skeletal box is covered from outside by thick acrylic sheets on all five sides leaving only one face open. On the open face of the roofless aluminium box, eight tungsten wires are fixed, which serve as anode wires. This entire assembly is then placed inside a gas tight aluminum box of cross-section 416 mm X 220 mm X 230 mm. Inlet and outlets are provided on this box allowing flow of gas, which is a mixture of 80% Argon and 20% Carbon Dioxide. While a high voltage of about +3KV is applied to the anode wires, a drift voltage of –10KV is applied to beginning of the drift field divider chain. Three paddles made out of scintillating tiles attached to photo multiplier tubes  are placed above and below the drift chamber covering the entire drift region (of length 30 cm approximately). Coincidence pulses from these paddles indicate passage of charged particle through the drift chamber and is used as the reference for drift time measurements.

Chapter 3

System Hardware

3. System Hardware                            Page 5
3.1 Basic Interfacing Circuitry

3.2 TDC Module

3.3 ISA Interface card

3.1 Basic Interfacing Circuitry

When a charged particle is passed through the drift chamber, small, negative polarity signals are developed over and above the high voltage of positive polarity is applied on the anode wires. These anode signals are filtered  out and picked up using  capacitors. The capacitors only pass anode signals  and not the high  voltage since they offer a high impedance to D.C and pass the alternating signals. These signals however are very small to be detected and processed comfortably. Hence, they are amplified using a set of eight amplifier circuits to a large suitable signal enough for further treatment. These pulses still cannot be handled directly by any digital circuit as they are analog in nature. Therefore, these amplified signals are fed through a bank of comparators, which convert the analog signals into their corresponding logic signals based on Emitter Coupled Logic. ECL to TTL converters are used thereafter to convert them to TTL signals which are used by the TDC module for further processing and data acquisition. 

3.2 TDC Module

The TDC (Time to Digital Converter) module is used to process and store the data coming from the Drift Chamber. It essentially has a set of eight 12-bit counters which individually store the timing information from individual anode wires (Refer Fig 1). Three 4-bit counters are used in a Cascaded mode for making 12-bit TDC counters. All the counters are driven by a common clock signal generated by a single 50 MHz crystal. The crystal clock is fanned out into 8 clock signals by Fan Out circuits built-in the TDC board.

Page 6

The counters count as long as the Enable signal and Clock signal are present (Refer Fig 2). The counters start counting when the Trigger signal arrives from the muon trigger detector. The Trigger signal is converted from NIM to TTL and fed to a D Flip Flop. The Trigger asserts the Enable lines of all the counters. The individual counters stop counting when they receive their corresponding anode wire signals. The anode wire signals are converted from ECL logic to TTL logic. Then they are fed as Edge Triggered Clocks to individual D FLIP Flops. So when anode signals arrive, they produce a Flip Flop output Q which is low. This Q is ANDed with the crystal clock and fed as the final clock to the counters. So a low Q deasserts the counter clock and thereby stopping the corresponding clock.

All the 8 counters start counting at the same time but stop when they receive their corresponding stop signal. For each 12 bit counter, there is a corresponding 12 bit buffer which stores the counter data. The data lines of all the buffers form the 12 bit data line of the TDC board. The TDC module can be asked to output the data of any buffer. The buffer can be selected using a 3 bit code which is decoded using a 3:8 decoder to form the Data Enable signals which select individual buffers. The enabled buffer then outputs the corresponding counter data to the data lines.

The TDC board has provision to load the counters with an initial count before starting to count. The TDC board takes a Load Counter signal which after fanning out is provided to all the counters. The counters however are loaded with an initial count of 0. A generic Master Clear signal given to the TDC serves to prepare the setup for a fresh set of reading by stopping the counter’s Enable signals. The TDC board has a 16 bit output line. Td0 – Td11, which form the 12-bit count value, occupy the first 12 bits. The next 3 bits are not connected. The last bit is the Trigger Status bit, which can be continuously monitored to know whether Trigger from Drift Chamber has arrived. 

Page 7

[image: image8.wmf]

[image: image9.wmf]Page 8

3.3 ISA Interface Card                                                                                        Page 9
The TDC board has to be interfaced to a PC. For that purpose, an ISA based PC Interface card is required. An ISA card fits into the ISA expansion slots of a standard IBM PC. The TDC board is connected to the ISA card through 34 pin FRC connectors (Refer Appendix B). There is signal transfer from ISA card to TDC board and also from TDC board to ISA card. The ISA card receives a part of the address lines and data lines of the PC which arrive on the ISA expansion slots. They can be activated by standard primitive operations like inp (input data from port) and outp (output data on port).

The ISA card receives SA0 – SA11 which are signals A0 – A11 (Refer Fig 3). They are used to address the card and also perform various functions of control and data readout from the TDC board. The Most Significant Nibble A11 – A8 is used as Master Select for the whole card.  It can be configured for any Hexadecimal digit by means of 4 DIP switches. Generally, a Base Address of 300H is used. All other address line except A1 and A2 are to be kept low. Lines A1 and A2 are used to select among the 4 basic functions of the card. These lines are fed to a 2:4 Decoder which produces four outputs which select among the various functions.

Assuming a base address of 300H, these are the addresses for various tasks:-

· 300H : Data Readout from TDC Board

· 302H : Selecting Counter Number. This address is used to send a 3 bit value to TDC board to select a particular counter

· 304H : Sending of Load Counter signal Ldc to TDC board

· 306H : Sending of Master Clear signal Mclr to TDC board

Page 10

The 3 bit counter select value is sent through a latch. So, even when the CPU write cycle gets over, the 3 bit value remains latched on. The 3 bit counter select, Load counter and Master Clear signals are all sent by standard IO write calls. The 16 bit data from TDC board is collected by a buffer which sends the incoming data to the Data Bus lines of the ISA expansion bus. The data is then read out using standard I/O read calls.

[image: image10.wmf]Page 11

[image: image11.wmf]
Chapter 4

Software
4. Software                                           Page 12

4.1 Specifications

4.2 Design Considerations

4.3 DLL

4.1 Specifications

The Software in the whole system acts as the agent who controls all the activities of the hardware modules. The Software should be able to setup the TDC board circuit through the ISA card for recording of data, which comes from the Drift Chamber circuitry. It does not however control the Drift Chamber. The Drift Chamber functions as a separate entity.

The software actually covers functions of data read out and control as well as certain data presentation. Typically, the software receives the time reference signal from the hardware unit. As it gets the start signal, it collects the data from the TDC module. The data received is stored on the hard disk for future detailed analysis. The data so acquired will be presented on the screen in a user selectable mode. Many relevant parameters can also be computed on-line and appropriately displayed. 

4.2 Design Considerations

The Software’s main work is to acquire data from the TDC module. A Data Acquisition System is only secondary because there are multiple ways to present or to analyse the same data depending on the kind of experiment one is performing. After this application would have been developed, some other group of people could need to work on the same Drift Chamber. When they develop a Data Acquisition System for their needs, they should not again have to do a study of the intricacies of the hardware. So, for that sake, this project was perceived as two separate modules one of which will provide a  

Page 13

software interface to the hardware and the other one will be a Data Acquisition System which will be independent of the hardware.

For the software interface to the hardware, a DLL is required. The DLL will host all the functionality of the hardware and will provide system level calls for interacting with the hardware. So, the DLL actually frees the Data Acquisition Software of the intricacies of the hardware by providing it with higher levels of abstractions.

As a language platform, Visual C++ was selected because of the following reasons :-

· System  I/O calls are provided

· Faster runtime which is essential when interacting with the hardware

Apart from these, Visual C++ also provides good tools to create a DLL.

The Data Acquisition Software interacts with the DLL asking it to provide data. The data is to be presented in a Graphical User Interface in various formats depending on the requirements of the user. Basically, the data can be viewed in two formats :

· Track mode

· Range mode

In the Track mode, the user can have a feeling of actually seeing the beams passing through the Drift Chamber. This mode can be in Snapshot mode or in Superimpose mode. In Snapshot mode, only the current beam is showed to 

Page 14

be passing at that instant. With each passing beam, the display will be updated with the new beam only. In the Superimpose mode, all the beams are shown to give a cumulative inference of the experiment.

In the Range mode, the user can verify the working of the Drift Chamber by looking at the range of values the Drift Chamber is providing for each anode wire. This can be further operated in Scatter Graph mode or Frequency Distribution mode. In the former mode, individual graphs for each anode shows the range of values that the anode receives. In the latter mode, the frequency distribution of the values obtained for each anode is represented in a graph.

Apart from presenting the data in Graphical format, the user can also see the results in pure textual format. User can also store log files for every experiment performed on the Drift Chamber to record other details of the experiment. The log files can also be seen through the software. The software stores the experiment data in a plain text format data file so that the user can also see the data in any other word processing software.

4.3 DLL

The DLL should be a standard Win 32 based DLL which should be able to connect to any Win 32 programming language like Visual C++  or Visual Basic etc. So it cannot have any Visual C++ specific interface with the client program.

Since the DLL forms the core of the software system, we present an exclusive chapter on DLLs.

Chapter 5

Dynamic Link Libraries
5. Dynamic Link Libraries                 Page 15
5.1 Introduction to DLL

5.2 Implicit Linkage and Explicit Linkage

5.3 MFC Extension DLL and Regular DLL

5.1 Introduction to DLL

Basically, a DLL is a file usually with a DLL extension consisting of global data, compiled functions, and resources, that becomes part of your process. It is compiled to load at a preferred base address, and if there's no conflict with other DLLs, the file gets mapped to the same virtual address in your process. 

The DLL has various exported functions, and the client program imports those functions. Windows matches up the imports and exports when it loads the DLL. A DLL contains a table of exported functions. These functions are identified to the outside world by their symbolic names or optionally by integers called ordinal numbers. The function table also contains the addresses of the functions within the DLL. When the client program first loads the DLL, it doesn't know the addresses of the functions it needs to call, but it does know the symbols or ordinals. The dynamic linking process then builds a table that connects the client's calls to the function addresses in the DLL. If  DLL is edited and rebuilt, the client program need not be built again unless function names or parameter sequences have changed. 

One could have one client program that imports functions from one or more DLLs. Also, many DLLs can call functions inside other DLLs. Thus, a particular DLL can have both exports and imports. This is not a problem because the dynamic linkage process can handle cross-dependencies.

Page 16

In the DLL code, you must explicitly declare your exported functions like this: 

_declspec(dllexport) int MyFunction(int n);

On the client side, you need to declare the corresponding imports like this: 

__declspec(dllimport) int MyFunction(int n);

In C++, the compiler generates a decorated name for MyFunction that other languages can't use. These decorated names are the long names the compiler invents based on class name, function name, and parameter types. They are listed in the project's MAP file. If you want to use the plain name MyFunction, you have to write the declarations this way: 

extern "C" __declspec(dllexport) int MyFunction(int n);

extern "C" __declspec(dllimport) int MyFunction(int n);

Just having import declarations isn't enough to make a client link to a DLL. The client's project must specify the import library (LIB) to the linker, and the client program must actually contain a call to at least one of the DLL's imported functions. 

By default, the linker assigns the main entry point _DllMainCRTStartup to a DLL. When Windows loads the DLL, it calls this function, which first calls the constructors for global objects and then calls the global function DllMain, which is to be filled up. DllMain is called not only when the DLL is attached to the process but also when it is detached and at other times as well. Here is a DllMain function declaration: 

DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)

Page 17

To know when the function is called during attaching to process and when during detaching, dwReason parameter can be compared to DLL_PROCESS_ATTACH and DLL_PROCESS_DETACH.

The DllMain function is also called when individual threads are started and terminated, as indicated by the dwReason parameter. 

5.2 Implicit Linkage and Explicit Linkage

In Implicit linking of DLL, the client has no control over the loading of the DLL. The DLL is implicitly loaded when the client program is loaded. When a DLL is built, the linker produces a companion import LIB file, which contains every DLL's exported symbols and optionally ordinals, but no code. The LIB file is a surrogate for the DLL that is added to the client program's project. When the client is built, the imported symbols are matched to the exported symbols in the LIB file, and those symbols are bound into the EXE file. When the client is loaded, Windows finds and loads the DLL and then dynamically links it by symbol or by ordinal. 

Explicit linking is more appropriate for interpreted languages such as  Visual Basic, but it can be used for C++ also. With explicit linking, an import file is not required, instead, one needs to call the Win32 LoadLibrary function, specifying the DLL's pathname as a parameter. LoadLibrary returns an HINSTANCE parameter that can be used in a call to GetProcAddress, which converts a symbol (or an ordinal) to an address inside the DLL. 

With implicit linkage, all DLLs are loaded when the client is loaded, but with explicit linkage, one can determine which and when DLLs are loaded and 

Page 18

unloaded. Explicit linkage allows you to determine at runtime which DLLs to load. 

If explicit linkage is used with LoadLibrary, one can specify the DLL's full pathname. However if pathname is not specified or if implicit linking is used, Windows follows this search sequence to locate the DLL:-

· The directory containing the EXE file 

· The process's current directory 

· The Windows system directory 

· The Windows directory 

· The directories listed in the Path environment variable 

5.3 MFC Extension DLL and Regular DLL

An MFC Extension DLL supports a C++ interface. It can export whole classes and the client can construct objects of those classes or derive classes from them just as if the class has been made inside the client. An extension DLL dynamically links to the code in the DLL version of the MFC library. Therefore, an extension DLL requires that your client program be dynamically linked to the MFC library and that both the client program and the extension DLL be synchronized to the same version of the MFC DLLs (mfc42.dll, mfc42d.dll, and so on).

However, MFC Extension DLLs cannot be loaded by any Win32 programming environment. For making a DLL compliant with all kinds of Win32 programming environment, one should use a Regular DLL. A big restriction on 

Page 19

Regular DLLs is that it can export only C-style functions. It cannot export C++ classes, member functions, or overloaded functions because every C++ compiler has its own method of decorating names. But for the internal design of the DLL one can use any number of C++ classes and MFC library classes inside the regular DLL. Btu the external interface to the client can only be simple C style functions.

For Extension DLLs, the macro AFX_EXT_CLASS should be added to the to the class declaration of the class to be exported. The header file of that class has to be included by the client program.

class AFX_EXT_CLASS CMyClass

The macro generates different code depending on the situation—it exports the class in the DLL and imports the class in the client. 

For regular DLL, one has to declare the function to be exportable int the DLL as:-

extern "C" __declspec(dllexport) int MyFunction(int n);

and on the client side as:-

extern "C" __declspec(dllimport) int MyFunction(int n);

Chapter 6

Design of Software
6. Design of Software                          Page 20
6.1 Modularisation of Software

6.2 Data Flow Diagrams

6.3 Working of DLL

6.4 Working of Data Acquisition Software

6.1 Modularisation of Software

The software is modularly built into two distinct modules:-

· A Dynamic Link Library which gives a higher level abstraction of Hardware level details

· A Client Application program which links to the DLL during runtime to give the complete Data Acquisition Software





 Run Time Linking


Low Level Hardware calls


Page 21

The Dynamic Link Library functions as a set of Library functions which can be runtime loaded by any application as when it has to interact with the Drift Chamber hardware. The DLL will host the calls to operate various controls on the TDC. The merit of using a DLL to host these calls and not directly embedding them in the Application program is that the entire DLL routines become reusable to other application developers who need not spend time on again developing the software interface to the card. The developer can concentrate on the specific application on hand.

All the application developer has to do is to include these libraries in the application and he will have the required functionality much like a library routine.

6.2 Data Flow Diagrams


   Raw Data 





                                                    Control Signals


    Invokes DLL
Raw Data



Configuration, Run No.


     
      Experiment Results

First Level DFD

Page 22

  
Wire Signals



Start Trigger

                                                    
 


Clear Signal


Counter Select
Data of Selected Counter




     Addressing
Raw Data

                           Invoking the DLL




        Raw Data

                               (Eight 12-bit data)
Lookup 



Table





Raw Data


Results


Configuration
Run Number


Graphical Output

                                              Second Level DFD

6.3 Working of DLL                                                                                          Page 23
The DLL is made into a Regular DLL with simple C style interface to the Data Acquisition Software. The working flow of the DLL is as illustrated in the flowchart :-







No



Yes









Page 24



No



Yes






A Master Clear is sent to the TDC Module to clear all the counters. Following this, a Load Counter signal is sent to the TDC Module which loads the Eight 12-bit counters with preset values which in this case are zeroes. At startup, these signals are sent from client program using DLL functions.

Then the DLL sends out the port address to read the status bit from the TDC Module which indicates availability of data on the counters. If status is found to be 1, then the program sits in a repeating loop until status becomes 0. This condition indicates the availability of proper data on the counters. The program then goes and reads the 8 counter data by sending out the port addresses each time.

Page 25

After reading out the data, both Master Clear and Load Counter are sent in anticipation of next data. In next cycle of data readout, Master Clear and Load Counter are not sent.

6.4 Working of Data Acquisition Software

The Data Acquisition Software has many modes to run. In the Track mode, user has two commands to start reading and to stop reading. On receiving the start command, it sends the Master Clear and Load Counter from its side and then instructs the DLL to give data. On receiving the data, it plots the data on the window depending on the mode in which it is working. On stop command, it does not read data. Also, simultaneously it goes on recording the data on a data file for further analysis. When plotting the data on the window, it checks in which mode it is running. If it is running in the Snapshot mode, it erases the previous beam and plots the new beam. If it is running in the Superimpose mode, it just plots the data over the plots already present.

Visual C++ does not reproduce the window when it reappears from behind other windows or after being minimized. So every time such an event occurs, the program has to recover all the data from data file already present and reproduce it on the screen just the way it would have appeared had it not disappeared.

The Range mode also works in a similar fashion. Only difference is that it does not plot the data as beam but plots it as eight different graphs, one each for each anode wire.

The user can also opt to view previous experiment data from stored files. It can again be shown in textual format without any visual presentation or it can be shown in the Track or Range modes. In either of the Track and Range mode, the software now gets the data from the data file and not the hardware device.

Chapter 7

Testing
7. Testing                                              Page 26
7.1 Verification of Hardware interface

7.2 Testing of Software 

7.1 Verification of Hardware interface

Development of the Drift chamber was part of the on going activity of the group. Therefore, it has already been designed, fabricated and tested. The TDC hardware that was described above was also available and had been tested. 

Simple stand alone routines have been first developed in order to get oneself acquainted with the ISA and TDC hardware. These routines have implemented all the basic Input/Output calls that were required by the Data Acquisition System software to control and acquire data from the Drift Chamber.
 For testing the output calls, the standalone applications ran basic calls. Their effects have been observed on the ISA card using an oscilloscope. The effect of the calls on individual pins have been as expected from the circuit diagrams. The input calls have been tested by asserting or de-asserting the input pins. The pins which were to be asserted during testing were left open and the pins that were to be de-asserted were connected to Ground (body). The input data was obtained using basic input calls. The input values tallied with the values set on the input pins. So all the individual calls were tested and verified. Each of these calls were successfully tested on the hardware and found to work as per their design.

7.2  Testing of Software                                                                                    Page 27
These basic calls were then packaged into a Dynamically Linked Library. Data Acquisition System software development work was done in parallel and the DLL has been supplied to the application software. The entire system has now been tested again with the Drift Chamber hardware successfully. Often, simulation routines were developed to debug and test the code as and when  required. Finally, the entire package was tested on the real experiment and data was collected from the drift chamber.

The software was operated in all the modes that it was designed to be operated in and found to meet its specifications. A set of sample outputs taken from these test studies are shown in the following pages.


Page 28


[image: image3.png]



Data Track in  Snapshot Mode


[image: image4.png]



Data Track in Superimpose Mode

 Page 29

Data of previously conducted experiment in Text mode

Chapter 8

Scope of Further Work
8. Scope for Further Work                           Page 30
There is definitely a scope for further work on this system. Though a lot of flexibility was built in this work at the concept, design and implementation stages, a future application might require further changes in the code. Even further, an experimental group might consider developing a totally new data acquisition package later. The DLL concept adapted in this project will come handy then, as one is required to develop data acquisition code using the DLL developed in this project. Further, one could also implement newer modes of operation of the software based on the drift chamber applications in future. Again, it is fairly easy to make these changes due to the flexibility of this software. To sum up, the software in present form fully meets the specifications and requirements as projected necessary at the time of this project development.

Appendix A

ISA Pin Study
ISA Pin Study                                                           Page 31
The ISA Bus architecture has 20 bits of address lines and 16 bits of data lines for the user. Apart from these, there are status lines such as IOR, IOW, SBHE, BALE, etc. 

     I/O Pin             Signal Name                    I/O Pin             Signal Name

        A1                   -I/O CH CK                        B1                  GND

        A2                   SD7                                   B2                  RESET DRV

        A3                   SD6                                   B3                  +5Vdc

        A4                   SD5                                   B4                  IRQ9

        A5                   SD4                                   B5                  -5Vdc

        A6                   SD3                                   B6                  DRQ2

        A7                   SD2                                   B7                  -12VDC

        A8                   SD1                                   B8                  OWS

        A9                   SD0                                   B9                  +12Vdc

        A10                 -I/O CH RDY                     B10                GND

        A11                 AEN                                  B11                 SMRDC

        A12                 SA19                                 B12                SMWTC

        A13                 SA18                                 B13                 IOW

        A14                 SA17                                 B14                 IOR

        A15                 SA16                                 B15                 DACK3

        A16                 SA15                                 B16                 DRQ3

        A17                 SA14                                 B17                 DACK1

        A18                 SA13                                 B18                 DRQ1

        A19                 SA12                                 B19                 REFRESH

        A20                 SA11                                 B20                 CLK

        A21                 SA10                                 B21                 IRQ7

        A22                 SA9                                   B22                 IRQ6

        A23                 SA8                                   B23                 IRQ5

Page 32


        A24                 SA7                                   B24                 IRQ4

        A25                 SA6                                   B25                 IRQ3

        A26                 SA5                                   B26                 DACK2

        A27                 SA4                                   B27                 T/C

        A28                 SA3                                   B28                 BALE

        A29                 SA2                                   B29                 +5Vdc

        A30                 SA1                                   B30                 OSC

        A31                 SA0                                   B31                  GND


       I/O Pin             Signal Name                    I/O Pin             Signal Name

        C1                   SBHE                               D1                  MEM CS16

        C2                   LA23                                D2                  I/O CS16

        C3                   LA22                                D3                  IRQ10

        C4                   LA21                                D4                  IRQ11

        C5                   LA20                                D5                  IRQ12

        C6                   LA19                                D6                  IRQ13

        C7                   LA18                                D7                  IRQ14

        C8                   LA17                                D8                  DACK0

        C9                   MRDC                              D9                  DRQ0

        C10                 MWTC                             D10                DACK5

        C11                 SD08                                D11                DRQ5

        C12                 SD09                                D12                DACK6

        C13                 SD10                                D13                DRQ6

        C14                 SD11                                D14                DACK7

        C15                 SD12                                D15                DRQ7

        C16                 SD13                                D16                +5Vdc

        C17                 SD14                                D17                MASTER

        C18                 SD15                                D18                 GND

Page 33

Functions of certain pins that are generally used and was used in the ISA card are mentioned in the following :-
SA [19:0] (System address bus) :-This is microprocessor’s latched address bus. The SA bus only latches the lower 20 bits of the address. The address for a bus cycle begins to appear on SA bus at the rising edge of BALE and is latched at trailing edge of BALE.

LA [23:17] (Latchable address bus) :- These signals are buffered version of the upper bits on the microprocessor’s address bus. This is used during address pipelining. When an ISA expansion board needs an early address decode, it should decode LA and not SA.

SBHE (System Bus High Enable) :- This is asserted during an 8-bit transfer with an odd address and a 16-bit transfer with an even address. 

SD [15:0]  (System data bus) :- This is the system data bus. It is used for data transfer operations. All 8-bit devices on the I/O channel use D0 through D7 and all 16-bit devices use D0 through D15 fro communications with the microprocessor.  

IORC / IOWC (IO Read / Write command) :- This signal is asserted by the system board logic during IO Read / Write bus cycle.

MRDC / MWTC (Memory Read / Write command) :- This signal is asserted by the system board logic during Memory Read/Write bus cycle. 

SMRDC / SMWTC (System Memory Read / Write Command) :- This signal is asserted by the system board logic during a memory read / write bus cycle that addresses a location in the lower 1MB memory address space (000000h to 0FFFFFh).

Appendix B

FRC Pin Allocations
FRC Pin Allocations                           Page 34
A FRC connector is used to connect the TDC board with the PC based ISA card. The  pins on the FRC connector have been allocated as per the following table :-

  Pin #           A side signal            B side signal

  1                      GND                         GND

  2                       TD0                          DAA      

  3                       TD1                          DAB      

  4                       TD2                          DAC      

  5                       TD3                                

  6                       TD4                          LDC      

  7                       TD5                          MCLR      

  8                       TD6                                

  9                       TD7                                

  10                     TD8                              

  11                     TD9                              

  12                     TD10                            

  13                     TD11                            

  14                        

  15                         

  16                     TSTA

  17                     GND                           GND

The pins, which have not been allocated, are not used for connection with the TDC board.

Page 35
Bibliography

Books Referred

· Techniques for Nuclear and Particle Physics Experiments by W.R.Leo.

Second Revised Edition. 

· TTL Logic DataBook

· Technical Reference – Personal Computer AT

· ISA System Architecture by Tom Shanley & Don Anderson

· Programming Visual C++ by David J. Kruglinski, Scot Wingo 

      & David Shepherd, Fifth Edition

· Mastering Visual C++  by Michael Young

· Learning Visual C++ in 21 Days – Sam’s Publication

Websites

www.msdn.microsoft.com

    APPLICATION


       PROGRAM





DYNAMIC LINK


       LIBRARY





                              EXISTING HARDWARE











  ISA





  TDC





       DRIFT


  CHAMBER





               


            DLL


               1

















         HARDWARE 


        3











      USER








       APPLICATION PROGRAM


                              2  





          DRIFT


      CHAMBER


              3.0





 TDC MODULE


            3.2





        TRIGGER     


    GENERATOR


              3.1








                  DLL


                   1.0








   


           ISA CARD


                  3.3 





     APPLICATION 


        PROGRAM


                2.0





DATA PROCESSING


                2.1





    	   GUI


	    2.2





              USER





Read data of corresponding Counter





Send address for selecting corresponding Counter





Is Status Ready ?





Initialise Counter number to 0





  Read Status Information





          START





� EMBED PBrush  ���








� EMBED AutoCAD.Drawing.14  ���





� EMBED AutoCAD.Drawing.14  ���





� EMBED AutoCAD.Drawing.14  ���





Increment Counter number





Is Count over ?





Send Master Clear





Send Load Counter





STOP








_1083399930

_1087908047.dwg

_1087909115.dwg

_1087046868

_1087907428.dwg

_1083399549

