

Programme of Detectors, Electronics and DAQ sub-group meeting
 Day-1 (13/02/2012), Venue – Room#4, New TSH Complex, Ground floor
 Chair: V.B.Chandratre/B.Satyanarayana

Detectors

Name	Affiliation	Topic	Start	Duration	End
Sumanta Pal	INO student, TIFR	The performance of RPC Stack at TIFR – concluding remarks	09:30:00	00:15:00	09:45:00
Moon Moon Devi	INO student, TIFR	Status of the work on development of Multigap RPC in TIFR	09:45:00	00:15:00	10:00:00
Raveendrababu Karanam	INO student, IITM	The Development and Characterization of Cosmic Ray Paddles for INO activities in IITM	10:00:00	00:15:00	10:15:00
Salim, Mohammed	AMU	Simulation studies of INO RPC	10:15:00	00:15:00	10:30:00
Dogra, Sunil	DU	RPC R&D activities at Delhi Univ.	10:30:00	00:15:00	10:45:00
Varchaswi Kashyap	INO student, BARC	Characterizing the of cosmic hodoscope at NPD	10:45:00	00:15:00	11:00:00
		Tea break	11:00:00	00:15:00	11:15:00
Nayana Majumdar	SINP	The effects of surface topography on charge induced in a Bakelite RPC	11:15:00	00:20:00	11:35:00
Manas Bhuyan	TIFR	RPC gas optimisation studies	11:35:00	00:15:00	11:50:00
S.D.Kalmani	TIFR	New gas recycling system	11:50:00	00:15:00	12:05:00
S.D.Kalmani	TIFR	Industrial interface and consultancy	12:05:00	00:15:00	12:20:00
Piyush Verma	TIFR	Integration issues	12:20:00	00:15:00	12:35:00
R.R.Shinde	TIFR	Background radiation studies using demo RPC	12:35:00	00:10:00	12:45:00
V.K.Bhandari	PU	Status of RPC work at PU	12:45:00	00:15:00	13:00:00

Electronics & DAQ

B.Satyanarayana	TIFR	Overview and status	14:00:00	00:30:00	14:30:00
Sonal Dhuldhaj	TIFR	FE chip tests with RPC	14:30:00	00:15:00	14:45:00
CMEMS	BARC	FE chip upgrade work	14:45:00	00:15:00	15:00:00
Mandar Saraf	TIFR	RPC-DAQ module	15:00:00	00:20:00	15:20:00
CMEMS	BARC	Status of TDC design	15:20:00	00:15:00	15:35:00
B.Satyanarayana	TIFR	Report on IITM activities (Based on Nagendra's report)	15:35:00	00:15:00	15:50:00
Mandar Saraf+Piyush Verma	TIFR	Integration issues	15:50:00	00:15:00	16:05:00
		Tea break	16:05:00	00:15:00	16:20:00
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes	16:20:00	00:15:00	16:35:00
P.Nagaraj	TIFR	Networking scheme	16:35:00	00:15:00	16:50:00
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies	16:50:00	00:15:00	17:05:00
B.Satyanarayana+Satyajit Saha	TIFR+SINP	Power supplies	17:05:00	00:10:00	17:15:00
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues	17:15:00	00:10:00	17:25:00
ECIL group	ECIL	Status report	17:25:00	00:10:00	17:35:00
		Discussion	17:35:00	00:25:00	18:00:00

News from RPC2012

**SPECIAL MENTION AWARD TO
SUDESHNA DAS GUPTA**

for her paper titled

***PROPOSED TRIGGER SCHEME FOR THE ICAL
DETECTOR OF INDIA-BASED NEUTRINO
OBSERVATORY***

Let us congratulate her for her good work

ICAL Electronics: *miles travelled; milestones to reach*

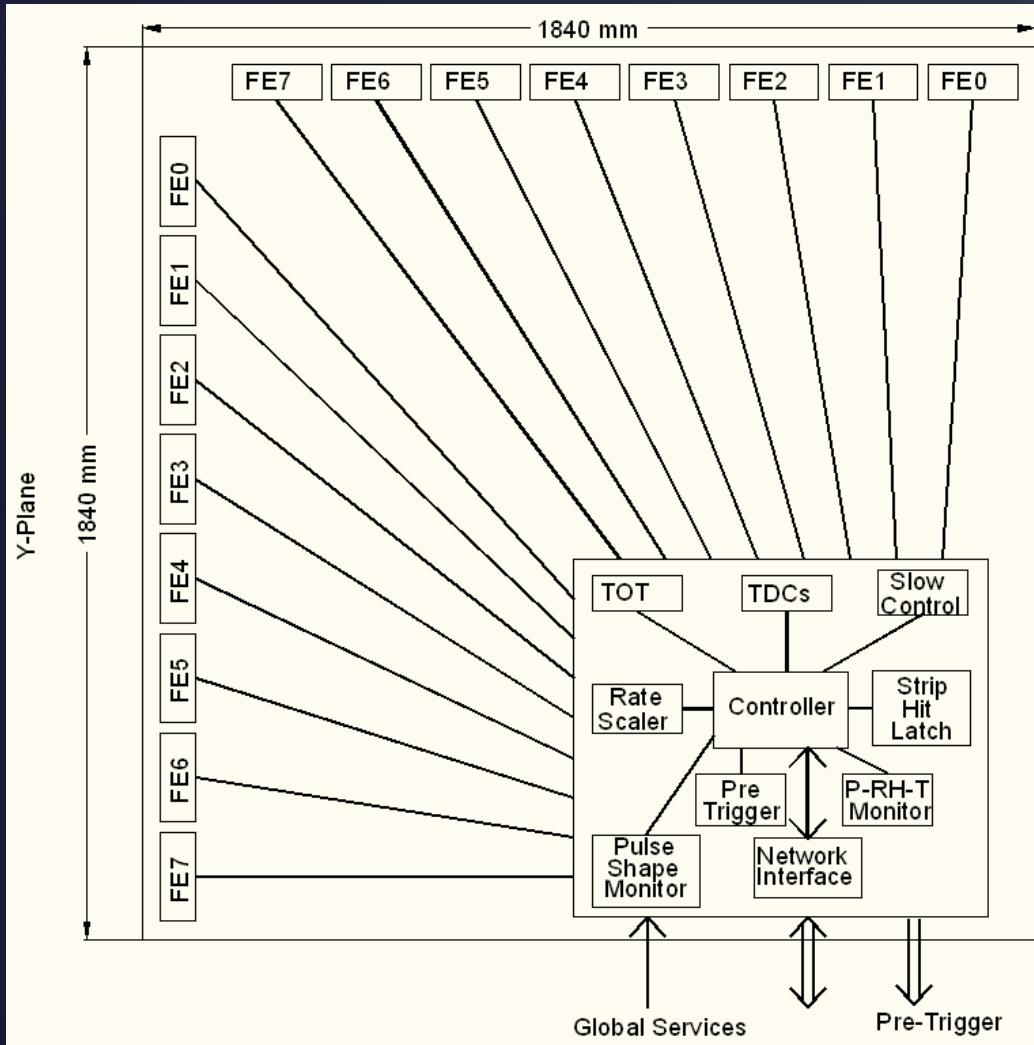
B.Satyanarayana [bsn@tifr.res.in], TIFR, Mumbai

INO Collaboration Meeting, BARC, Mumbai, February 13-15, 2012

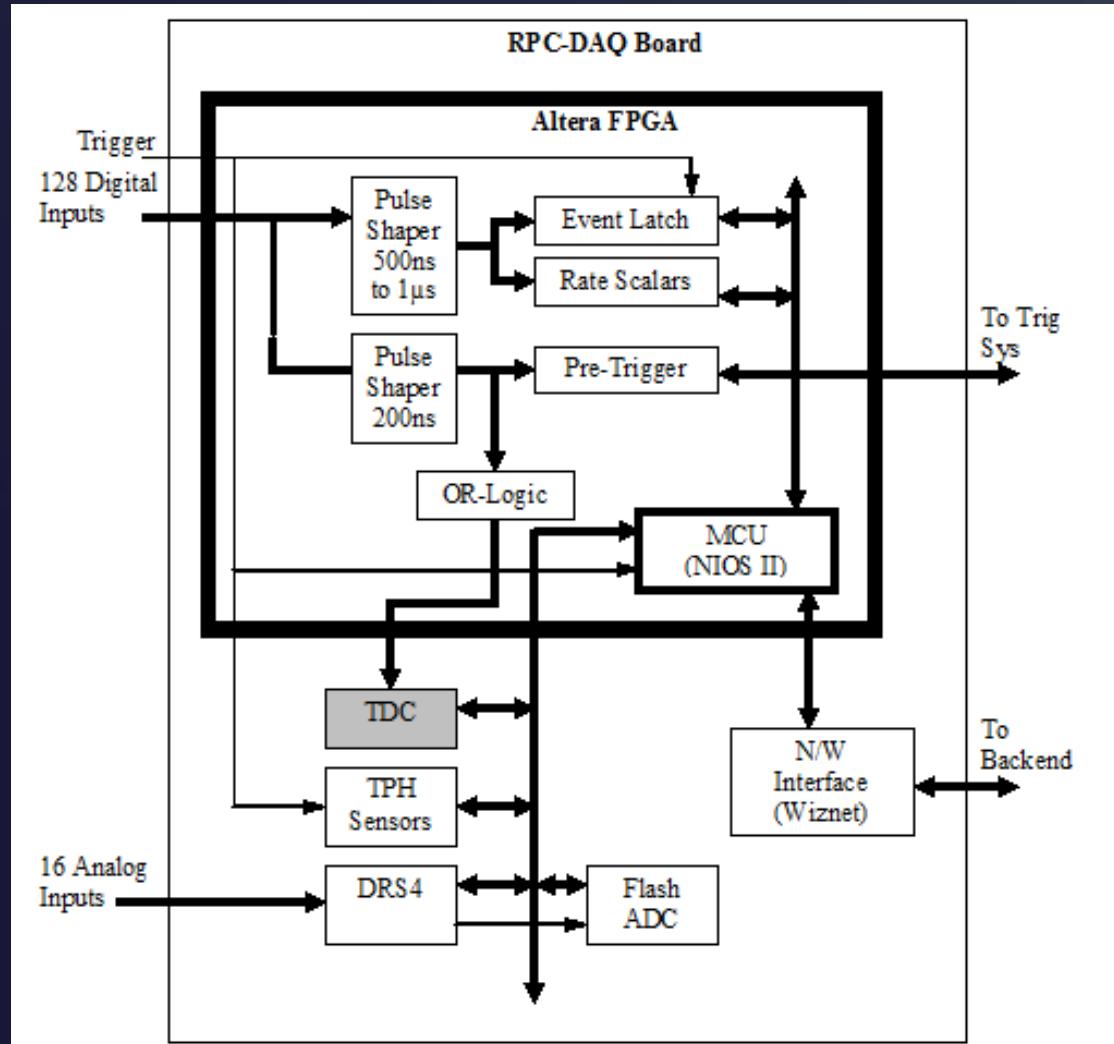
Work in progress and action plan

- ❖ Study of amplifier gain and buffer output signal linearity using external pulser
- ❖ Detailed study of threshold adjustment and its stability
- ❖ Try finer threshold adjustment by connecting a $100K\Omega$ resistor to either side of $P2$ trim-pot (which is $100K\Omega$)
- ❖ Calibration of threshold for RPC using noise rate and efficiency parameters
- ❖ Integration of front-end board with RPC stack at TIFR
- ❖ Revision of the chip
 - Solve instability problem while the multiplexer is turned on
 - Separate chips for positive and negative inputs as well as amplifier and discriminator might anyway solve this problem

Tale of two FE boards AP1, AP2


Tests of two FE boards on RPCs

- ❖ Minimum threshold values possible with AP2 and AP1 boards is at $V_{38}=1.650V$. So the effective threshold is $\sim 250mV$.
- ❖ Obtained stable noise rates with both boards.
- ❖ Noise rates with HMC based preamplifier is double to those obtained with AP2.
- ❖ Efficiency with AP2 board is about half compared to what was obtained with HMC based board.
- ❖ Operating gain about $4mV/\mu A$ as against the design value $8mV/\mu A$?
- ❖ Design revisions by the CMEMS group; ready for a second iteration production?


Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Functional diagram of RPC-DAQ

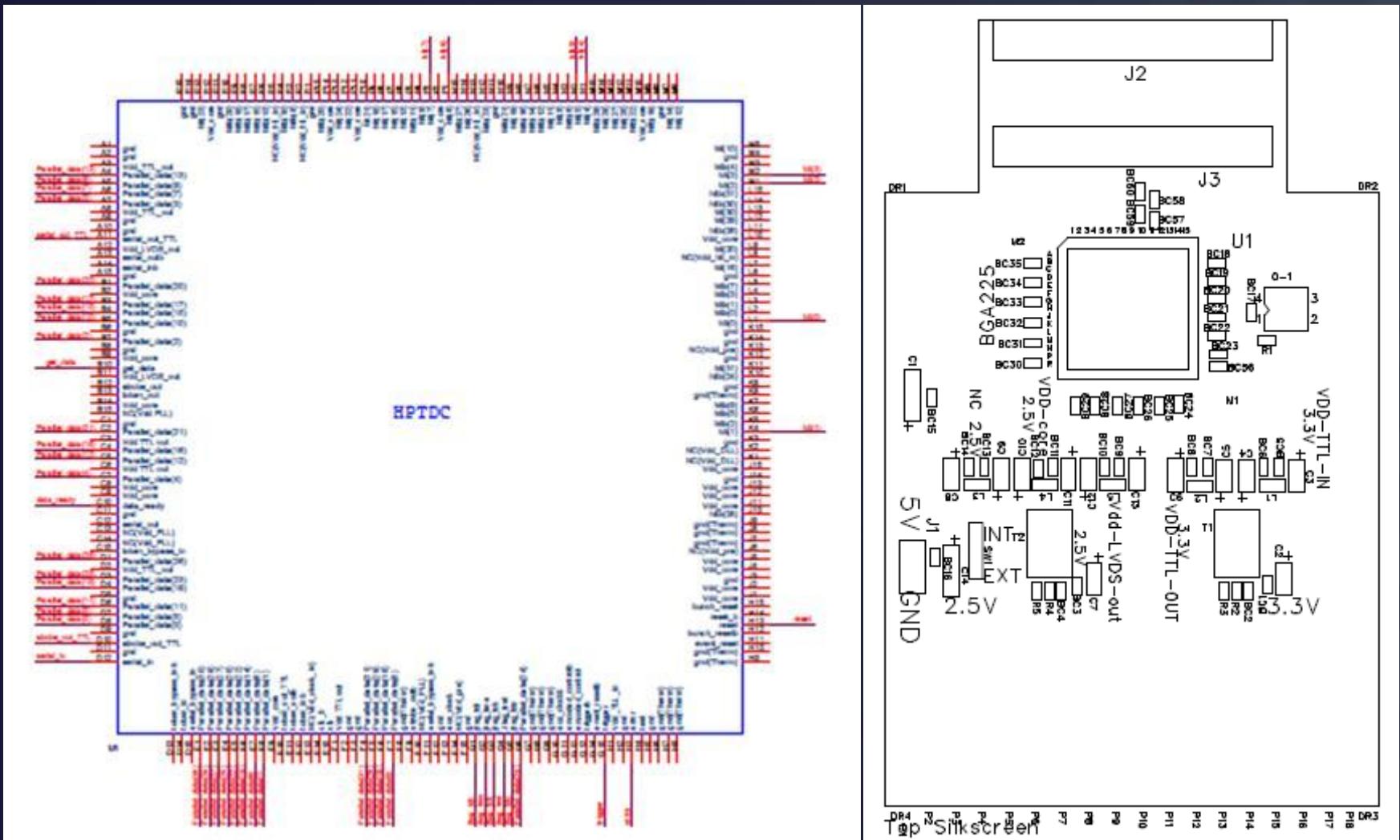
Functional diagram of RPC-DAQ

Prototyping of RPC-DAQ module

- ❖ Using IITM designed MSP430 board
- ❖ Digital logic (rate scalers, latches etc.) in FPGA on a trainer kit
- ❖ SPI interface between the two
- ❖ Serial interface between the MSP board and the PC/host
- ❖ Appropriate signal translators for the existing system
- ❖ Will lead to a pilot RPC-DAQ board design

Proof of principle effort (RPC-DAQ)

- ❖ Can be tested today on the RPC stacks
- ❖ Front-end board with the current board's form-factor, but using ASICs
- ❖ RPC-DAQ board with:
 - TDC
 - Waveform sampler
 - Strip-hit latch and rate monitor
 - Controller + data transceiver
 - Firmware for the above
 - Pre-trigger front-end
 - TPH monitoring
 - Pulse width monitoring
 - Front-end control
 - Signal buffering scheme
 - and GP area or ports for accommodating new blocks
- ❖ VME data concentrator module
- ❖ Result: Complete readout chain is tested
- ❖ Can we use this for RPC QC test stands or what?


Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Specifications of the ICAL timing device

Parameter	Specification
1. Number of channels	8 or 16
2. Least count	200ps
3. Dynamic range	2 μ s (essential), 32 μ s (desirable)
4. Number of bits	14 (essential), 18 (desirable)
5. Type	Common stop
6. Hits	Single hit (essential), multi hit (desirable)
7. Double hit resolution	5-10ns
8. Readout buffer size	128 words (maximum)
9. Signal and control inputs	LVDS and LVTTL respectively
10. DNL/INL	100ps (typical)
11. Power rail	3.0 to 3.6V (suggested)
12. Control and readout interface	SPI (essential), SPI + parallel (desirable)

Place-holder for TDC on RPC-DAQ prototype

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

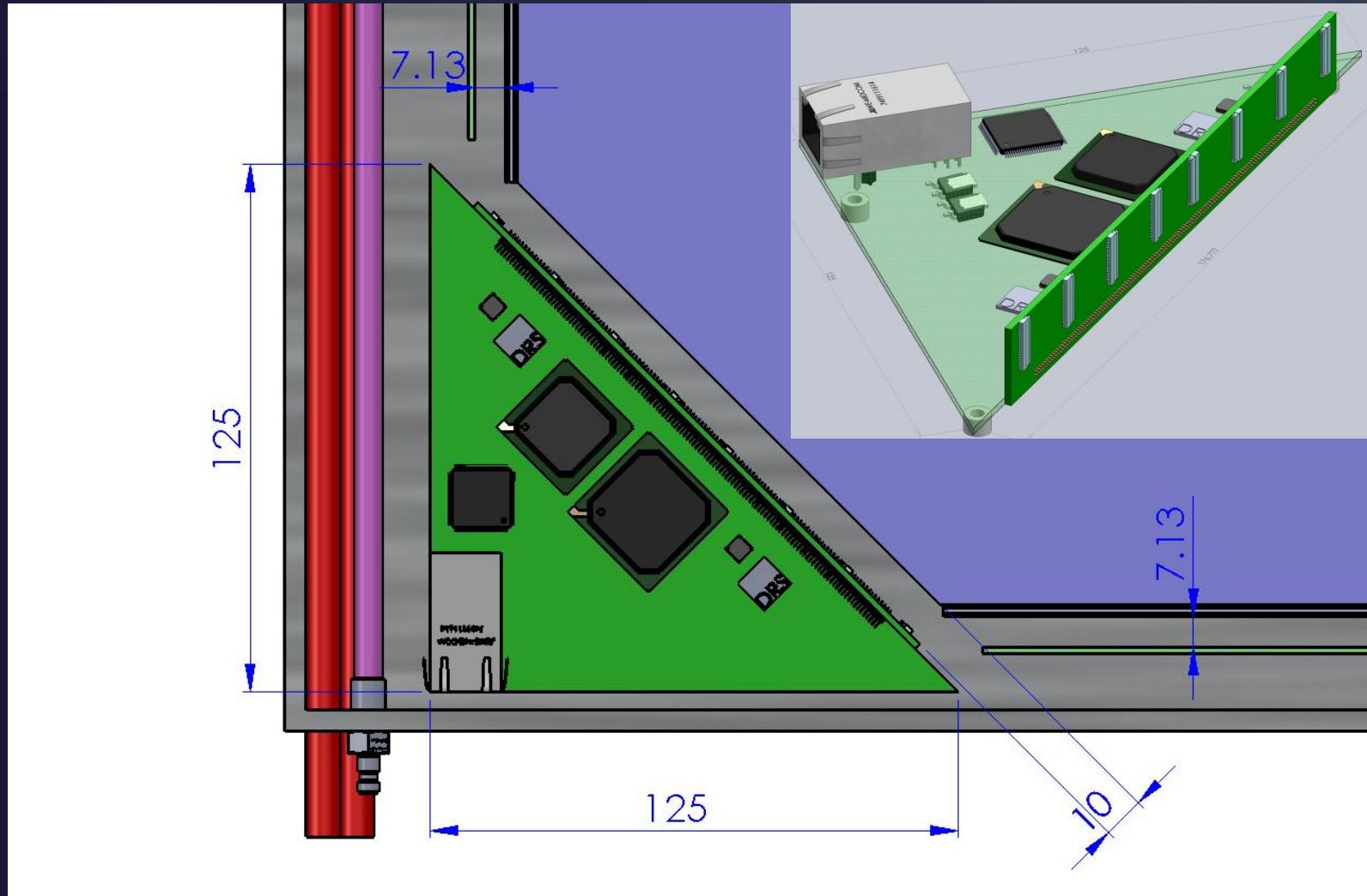
Chip design activities at IIT Madras

- ❖ Front end amplifier (gain ~ 100 , BW $\sim 500\text{MHz}$)
- ❖ Time to digital converter (delay line based, 50ps)
- ❖ Analog memory (64 samples, 2GSPS, 8-bit 10MHz ADC)
- ❖ More on these developments from Anil → Nagendra

Harshit Vaishnav's thesis

In this project, design of a front end circuitry for neutrino detectors is presented. The system consists of a high speed front end amplifier and latching circuitry. A time to digital converter (TDC) is used to measure the time of arrival of the input with respect to a reference start. A delay locked loop is used to stabilize the delays against PVT variations. A phase locked loop is used to generate a high frequency clock from a low frequency input clock. A digital back-end is designed to process the data digitally and to output a serial data stream.

The design is implemented in 0.13 μm CMOS process. The TDC has a resolution of 125 ps and a range of 131 μs . It occupies 0.24 mm^2 area and consumes negligible static power. The DLL occupies 0.12 mm^2 area and consumes a power of 2 mW. The amplifier has a DC gain of 41.5 dB and a bandwidth of 513 MHz and consumes 0.2 mW power. The design will be sent for fabrication in the UMC 0.13 μm CMOS process.

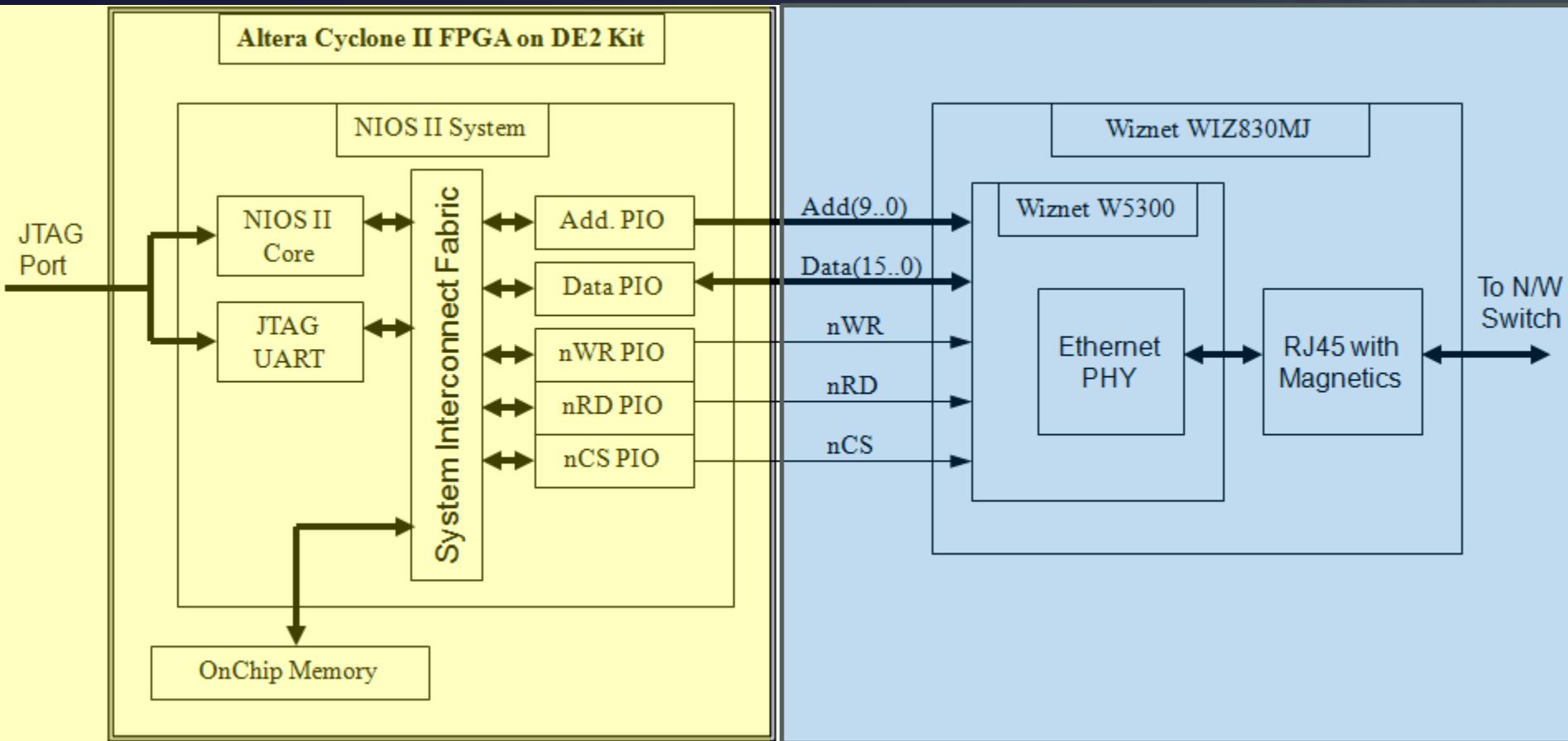

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Integration issues

- ❖ Mounting of electronics on top of RPC is not *liked* – wasting of space/volume
- ❖ Suggestion to mount on the sides
- ❖ Increase the shamerred areas on four corners of the RPC
- ❖ Mount DAQ for two planes (X & Y) and power supplies (LV, HV) in these areas
- ❖ Front-ends to be mounted along the planes
- ❖ Issue of pickup-strips to the front-end solved automatically!
- ❖ Modeling and prototyping in progress
- ❖ Industrial dimensions of glass is helping this scheme

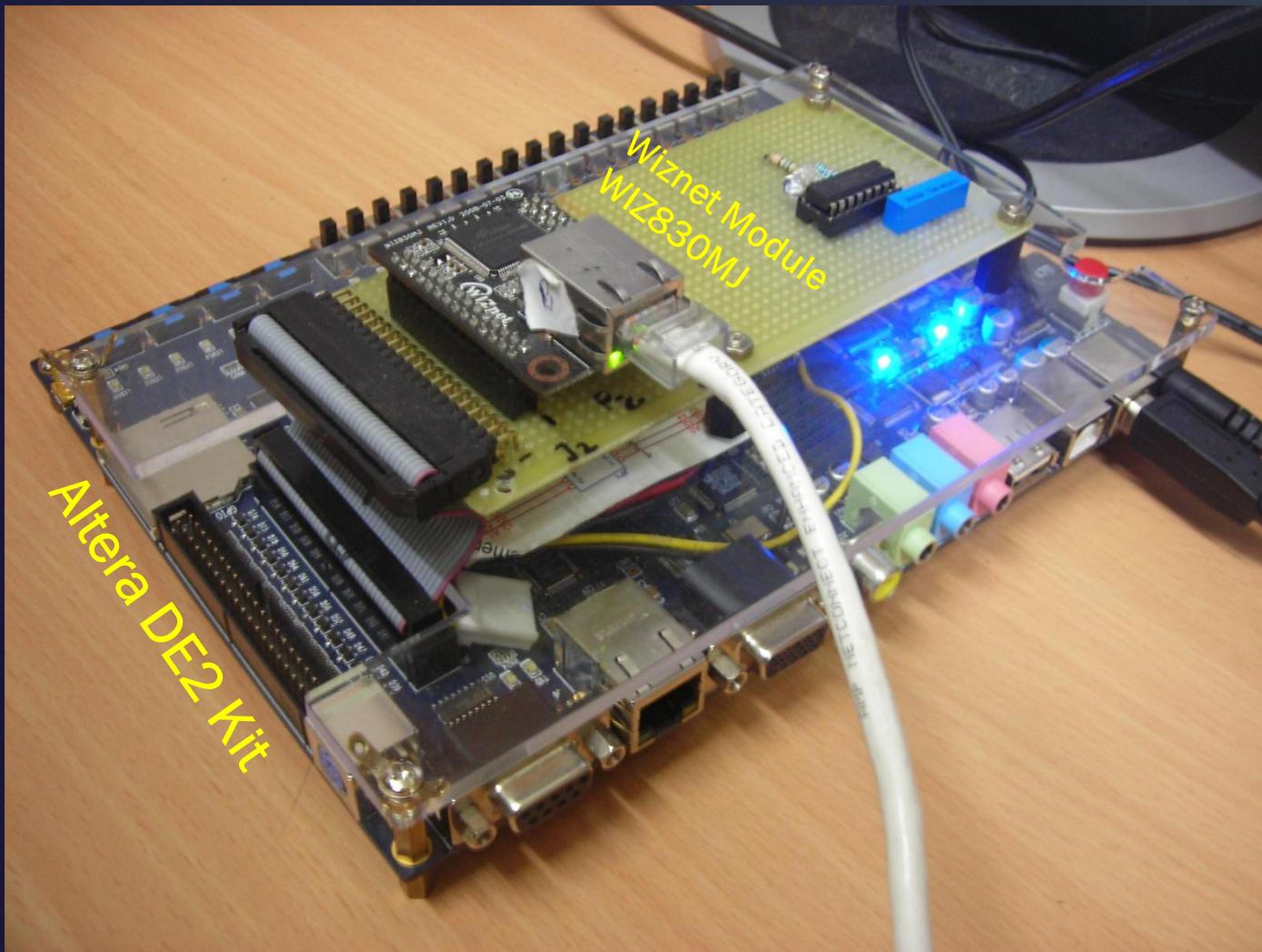
Fighting for an mm in a 132m×26m×20m cavern!


Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Networked DAQ scheme

- ❖ Alternate approach for VME back-end
- ❖ Choose appropriate controller
- ❖ Simplified system design, cabling
- ❖ Speed, switching, protocols


Wiznet to FPGA Interface

Current work on data interface

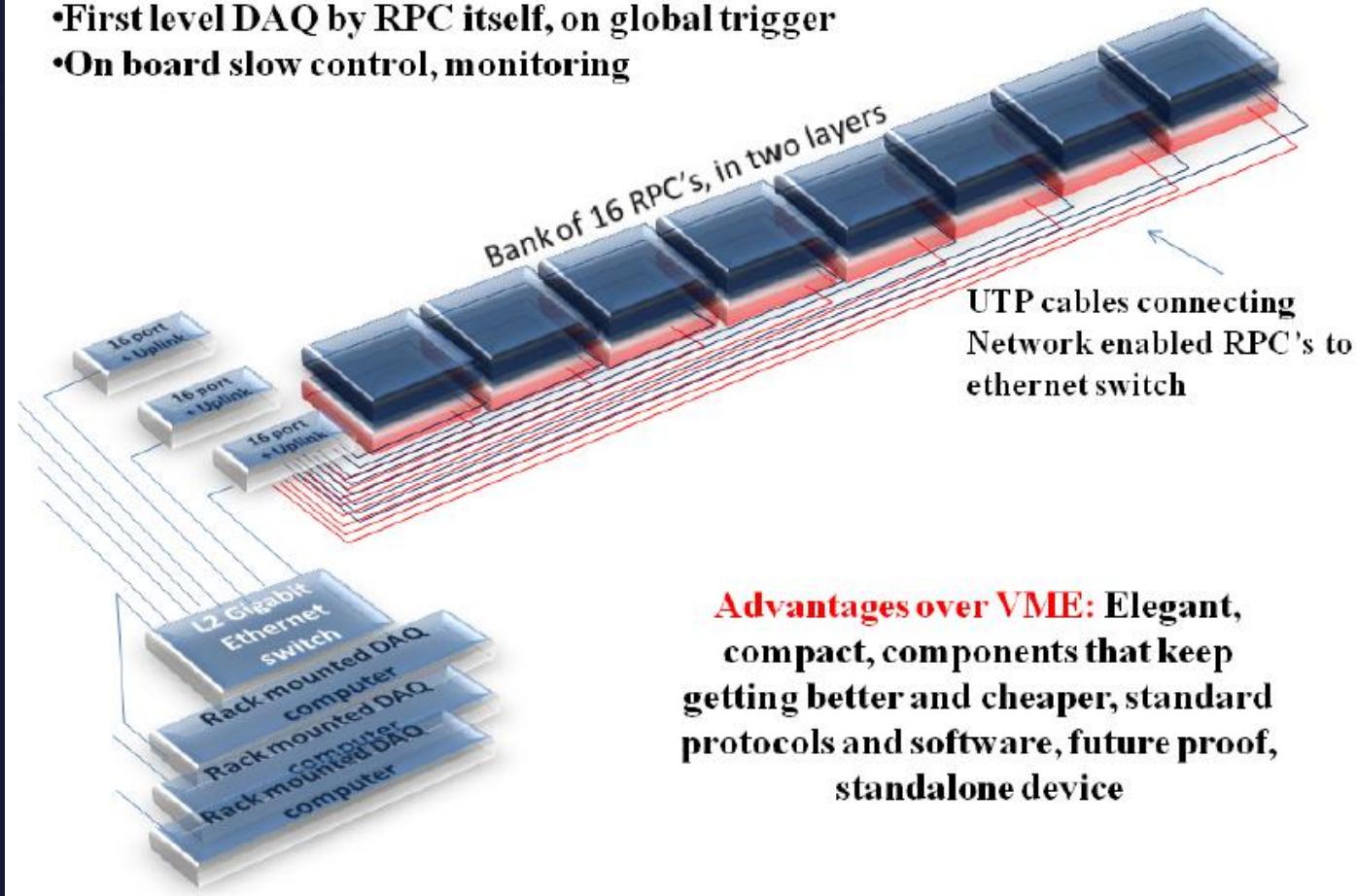
- ❖ Altera DE2 kit with Cyclone II EP2C35 FPGA
- ❖ FPGA configured with NIOS II system using SOPC Builder a part of Altera Quartus
- ❖ Wiznet W5300 interfaced to NIOS II in port mapped I/O mode
- ❖ Software developed in NIOS II EDS IDE in C
- ❖ Established two way communication between PC and Wiznet test setup.

Wiznet to FPGA Interface

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Event data rates


- ❖ Event Data per Trigger is as follows: (64 strips on each plane of RPC)
- ❖ TDC data = 1 channel for 8 strips and both the edges per hit, up to 4 hits per channel per event = 16 channels x 2 edges x 4 hits x 16 bits = 2048 bits
- ❖ Hit data per RPC = 128 bits
- ❖ RPC ID = 32 bits
- ❖ Event ID = 32 bits
- ❖ Time Stamp = 64 bits
- ❖ DRS data = 16 channels x 1000 samples x 16 bits = 256000 bits
- ❖ (DRS data comes in event data only if we get summed analog outputs from the preamplifier)
- ❖ Data size per event per RPC
- ❖ With DRS data, $D_R = 2048 + 128 + 32 + 32 + 64 + 256000 = 258,304$ bits
- ❖ Without DRS data, $D_R = 2048 + 128 + 32 + 32 + 64 = 2,304$ bits
- ❖ Considering 1Hz trigger rate, Maximum Data Rate at each RPC = 252.25 kbps

- ❖ Total data size per event across 3 modules
- ❖ With DRS data, $D_T = 258304 \times 28800 = 7,439,155,200$ bits i.e. 6.928 Gbits
- ❖ Without DRS data, $D_T = 2304 \times 28800 = 66,355,200$ bits i.e. 63.28125 Mbits
- ❖ Considering 1Hz trigger rate, Maximum Data Rate at backend = **6.928 Gbps**

Monitor data rates

- ❖ Monitor Data per 10 seconds
- ❖ We require to monitor 1 pick-up strip per plane per RPC.
- ❖ Monitor Data per strip = 24 bits
- ❖ Channel ID = 8 bits
- ❖ RPC ID = 32 bits
- ❖ Mon Event ID = 32 bits
- ❖ Ambient Sensors' data = 3×16 bits = 48 bits
- ❖ Time Stamp = 64 bits
- ❖ DRS data = 1000 pulses (if noise rate is 100Hz) $\times 16$ bits $\times 100$ samples = 1600000 bits
- ❖ (DRS data comes in monitoring data only if we get multiplexed analog outputs from the preamplifier)

- ❖ Data size per 10 seconds RPC
- ❖ With DRS data = $24 + 8 + 32 + 32 + 48 + 64 + 2048 + 1600000 = 1,602,256$ bits
- ❖ Without DRS data = $24 + 8 + 32 + 32 + 48 + 64 + 2048 = 2,256$ bits
- ❖ **Max Data Rate for 10 second monitoring period per RPC = 156.47 kbps**

Networking issues, devices

- RPC's designed as network devices
- Each RPC will have Embedded μ P + Linux + TCP/IP
- First level DAQ by RPC itself, on global trigger
- On board slow control, monitoring

Advantages over VME: Elegant, compact, components that keep getting better and cheaper, standard protocols and software, future proof, standalone device

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Trigger scheme for ICAL

- ❖ Validation of the trigger schemes
- ❖ Ready to go for implementation
- ❖ Integration issues
 - Segment trigger module positions
 - Pre-trigger signal driving issues
- ❖ Specifications:
 - Coincidence window: 100ns
 - Maximum trigger latency: 1us
 - Singles rate for RPC detector pickup strips: 250 Hz
 - The skew and jitter in arrival instant of the global trigger at different RPCs should be as low possible
- ❖ News: BARC team (Anita Behere *et al*) joined the trigger team for implementation

Trigger implementation

- ❖ Trigger scheme developed and validated
- ❖ Layout of trigger scheme implementation
- ❖ Study of LVDS transmission
- ❖ Conceptual design of the trigger modules
- ❖ FPGA logic development
- ❖ Validation of design concept in FTM

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Role of waveform sampler for ICAL

- ❖ Walk correction of TDC data
- ❖ Leading edge discriminator
- ❖ Time over threshold information
- ❖ Pulse profile, height and width monitoring
- ❖ Remote display of RPC signals

Consolidation of its function

- ❖ Better understood DRS4 – thanks to the *demo RPC* project!
- ❖ Not sure though, if we understood the exact role and hence its exact operation scheme ICAL electronics
- ❖ Do we use in both event and monitoring modes?
- ❖ The above required different front-ends for the analog front-ends
 - Multiplexed analog signal
 - Easier to implement?
 - Timing problem in event mode
 - Summed/ORed analog signal
 - Relatively difficult to implement?
 - No timing issue, hit channel id could be inferred
- ❖ Where is the chip?

Power supply options

- ❖ High voltage (Central scheme)
 - Two options: a channel at 12kV or two channels at $\pm 6\text{kV}$
 - Consider powering 4 RPC with a single HV channel ($10\mu\text{A}$ current)
 - Cable diameter an integration issues, connectors a cost issue
- ❖ High voltage (Distributed scheme)
 - DC-DCHV converters
 - Each RPC has to be identical to the others
 - Each RPC will have its own DC-HVDC converter for generating HV and LV
- ❖ Low voltage
 - Power budget 25W per RPC
 - How many low voltages?
- ❖ Space for DC-DC converters inside the RPC unit an integration issue
- ❖ Magnetic field
 - Fringe field mostly is below 100 Gauss
 - But some places between 100 and 1000 Gauss
 - Difference between 100 and 1000 Gauss is relevant for the design of the DC-HVDC

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Software components

- ❖ RPC-DAQ controller firmware
- ❖ Backend online DAQ system
- ❖ Local and remote shift consoles
- ❖ Data packing and archival
- ❖ Event and monitor display panels
- ❖ Event data quality monitors
- ❖ Slow control and monitor consoles
- ❖ Database standards
- ❖ Plotting and analysis software standards
- ❖ OS and development platforms

Software

- ❖ News: BARC team (Diwakar, Padmini *et al*) joined the software team
- ❖ Back-end Data Acquisition and Monitoring System
 - Event Data Acquisition
 - Periodic Online Monitoring of RPC Parameters
 - Event Data Quality Monitoring
 - Control and Monitoring Console
 - Local and Remote Consoles
- ❖ Front-end firmware/software will be responsibility of the TIFR group
- ❖ Scope for more players (especially physicists)

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Industrial interfaces, services

Presentations to follow

B.Satyanarayana	TIFR	Overview and status
Sonal Dhuldhaj	TIFR	FE chip tests with RPC
CMEMS group	BARC	FE chip upgrade work
Mandar Saraf	TIFR	RPC-DAQ module
CMEMS group	BARC	Status of TDC design
Nagendra Krishnapura	IITM	Integrated Circuits for the INO
Mandar Saraf+Piyush Verma	TIFR	Integration issues
S.S.Upadhyay+B.K.Nagesh	TIFR	Data interface schemes
P.Nagaraj	TIFR	Networking scheme
Sudeshna Dasgupta	TIFR	Trigger scheme implementation studies
B.Satyanarayana+Satyajit Saha	TIFR+ SINP	Power supplies
Deepak Samuel+BARC S/W group	TIFR+BARC	Software issues
ECIL group	ECIL	Status report

Priorities and promises

- ❖ ICAL Electronics documentation
- ❖ Delays and Synchronisation scheme
- ❖ Timeline for the 8m×8m engineering model
- ❖ Location of components and their integration issues