

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at:

<http://www.elsevier.com/locate/permissionusematerial>

On aging problem of glass Resistive Plate Chambers

S.S.Bhide^a, V.M.Datar^b, S.D.Kalmani^a, N.K.Mondal^a, L.M.Pant^b, B.Satyanarayana^{a,*}, R.R.Shinde^a

^aDepartment of High Energy Physics, Tata Institute of Fundamental Research, Mumbai, INDIA

^bNuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA

Resistive Plate Chambers (RPCs) were chosen to be the active elements for a 50kton neutrino detector, which is proposed to be built by the India-based Neutrino Observatory (INO) collaboration. As part of the detector R&D programme, we have built a large number of prototype RPCs and studied their characteristics. While, the results obtained by us are in agreement with those reported in the literature, the RPCs were observed to suffer severe damage when operated continuously for a few months. We summarise here our studies on this problem.

Figure 1. INO detector concept

1. Introduction

The INO collaboration is proposing a large magnetized iron tracking calorimeter of total weight 50 kton using atmospheric neutrinos as source[1]. The proposed detector will have a modular structure of lateral size 48m × 16m and will consist of a stack of 140 layers of 6cm thick iron plates interleaved with 2.5 cm gaps to house RPC detector layers. About 27000 RPCs of dimension 2m × 2m will be needed for this experiment. Shown in Fig. 1 is the INO detector concept.

2. RPC R&D effort

A dedicated R&D effort is currently underway to develop and characterise RPCs which are needed for this experiment. A beginning has been made by building and testing several single gap (2 mm) glass RPCs of area 30 × 30 cm² as well as a few of larger size, of area 120 × 90 cm². The Voltage-Current (V-I) characteristics of these de-

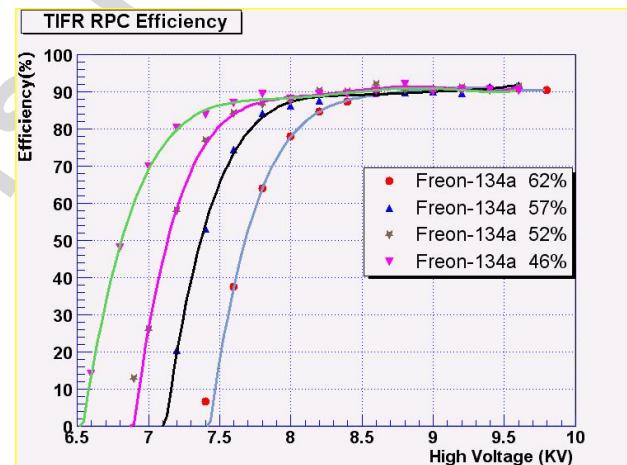


Figure 2. Efficiency plateau plots obtained for various gas mixtures

tectors were studied. The noise rate was found to be a reliable way of monitoring the stability of the RPC. Streamer plateau efficiencies of over 90% for various gas mixtures have been obtained for minimum ionising particles as seen from Fig. 2. For all these studies, while Argon fraction in the gas mixture was kept at 30%, Freon(R134a) and isobutane were added to the rest of 70%.

Measurements of the charge linearity and time response of the RPC as a function of applied High Voltage have been made. The typical time resolution, σ , of the RPC when operated in the High Voltage plateau is about 1.2 ns (Fig. 3). The

*Corresponding author, email: bsn@tifr.res.in

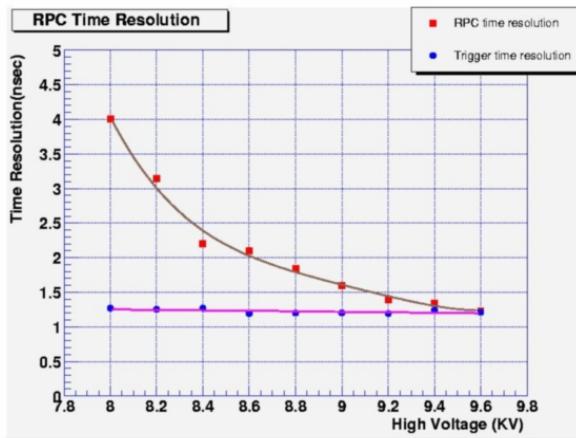


Figure 3. Timing resolution plot of the RPC

cross talk between the adjacent pickup strips was found to be less than 6%.

3. Infrastructure development

A gas system capable of mixing and distributing four input gases was developed. The gas is usually mixed in a buffer cylinder and flown from there into the RPCs under test. Alumina based moister filter and dust filters are mounted on the gas system's output line. Schematic of the gas system is shown in Fig. 4. RPC test system consisting of a scintillator paddle based Cosmic ray telescope as well as a NIM/CAMAC based DAQ system was also developed. Various tools and jigs needed for RPC assembly and their quality control were also developed.

4. Aging problem

The first encounter we had with the aging problem was when we operated the RPC, results of which are shown in Figs. 2 and 3, continuously for a few months. We had noticed that, while its efficiency dropped suddenly, the noise rate and chamber current have shot up. The chamber could not be revived. The problem was identical to that reported in the literature [2,3]. The chamber was broken open and the inner surfaces of the electrodes were scanned under Atomic Force Mi-

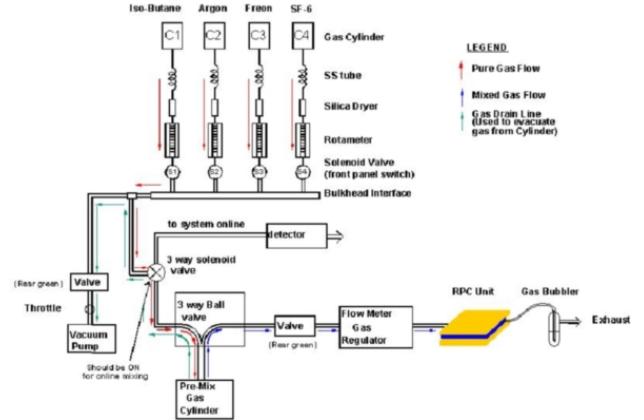


Figure 4. Schematic of the gas system used

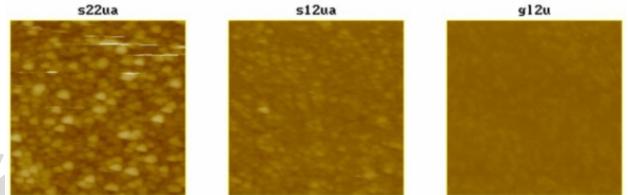


Figure 5. AFM scans of damaged anode, damaged cathode and a raw glass sample

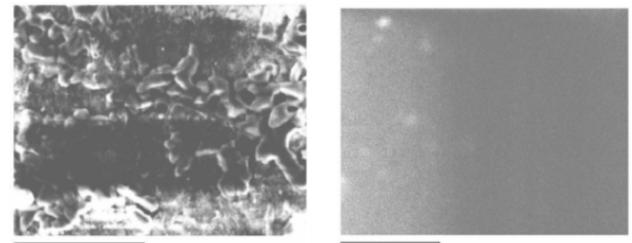


Figure 6. SEM scans of damaged electrode and a raw glass sample

croscope (AFM) [4] and Scanning Electron Microscope (SEM). Shown in Fig. 5 are pictures of two (anode and cathode) damaged electrode and raw glass surfaces.

The SEM images of the same damaged electrode and a raw glass are shown in Fig. 6.

Element analysis was also performed again both on damaged electrode and raw glass sam-

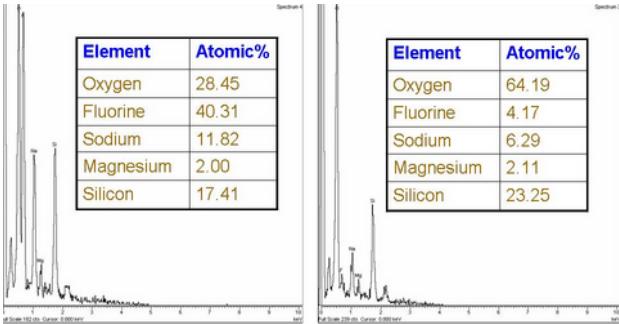


Figure 7. Element analysis of a damaged electrode and of a raw glass sample

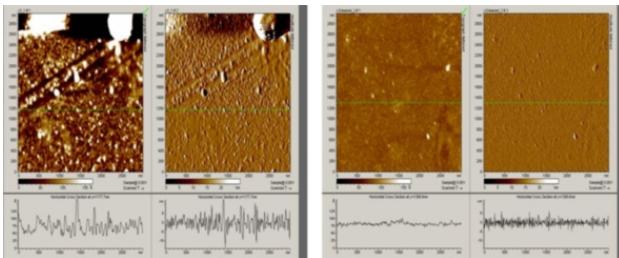


Figure 8. AFM images of a damaged and cleaned electrodes

ple, results of which are shown in Fig. 7 and the inset tables. The structures shown in the AFM and SEM scans were found to be rich in Fluorine, confirming the reasoning that Freon (R134a) gas contaminated with moisture forms Hydro Fluoride (HF), which actually damages the RPC.

The structures on the damaged electrodes were found to be loose deposits on the electrodes rather than permanent damaged regions on the glass. This was demonstrated by the AFM images shown in Fig. 8. On the left plate, we have shown the damaged surface, while on the right, we show the same sample which was wiped clean by a dry rough tissue paper.

5. Further studies studies on aging

We have tried operating the RPCs in lower gain avalanche mode by changing the gas to a two-component mixture of Freon (R134a) and isobutane in the ratio of 95.5:4.5. This didn't result in

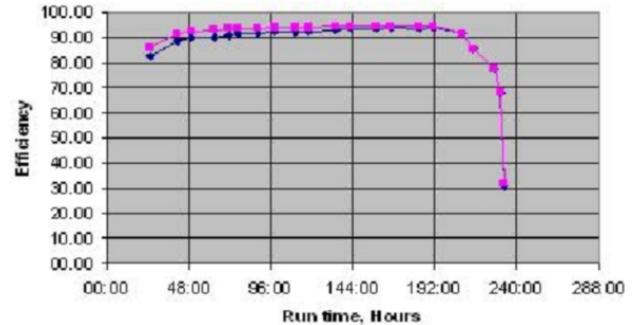


Figure 9. Efficiency drop of an aging RPC

drastic improvement with regard to the aging of the chamber. Shown in Fig. 9 is an efficiency monitor for about last 10 days of a RPC before getting damaged.

A parameter called streamer size has been devised and was monitored during long term tests of the RPC. The streamer size indicates the fraction of single strip hits for a cosmic ray muon trigger to its sum with the adjacent strips. We find that the streamer size parameter increases monotonically with time, indicating that the size of region which is getting damaged is also increasing. This is ultimately leading to a run away condition.

Shown in Fig. 10 and Fig. 11 are the noise rate history of the RPC and its individual strip rates respectively. We see from the Fig. 11 that the increase in the noise rate is not a local phenomenon.

6. Recovery of a damaged RPC

Following the recipe suggested by H.Sakai et al [2], i.e. purging the damaged chamber by pure Argon bubbled through 25% Ammonia solution for 24 hours without electric field, we could recover the efficiency and brought down the noise rate. In Fig. 12, we show the recovery characteristics of this chamber. However, the chamber did not sustain the recovery for long time later.

7. Conclusions

We have successfully developed and built many small and large area glass RPC prototypes. We have obtained results which are consistent with

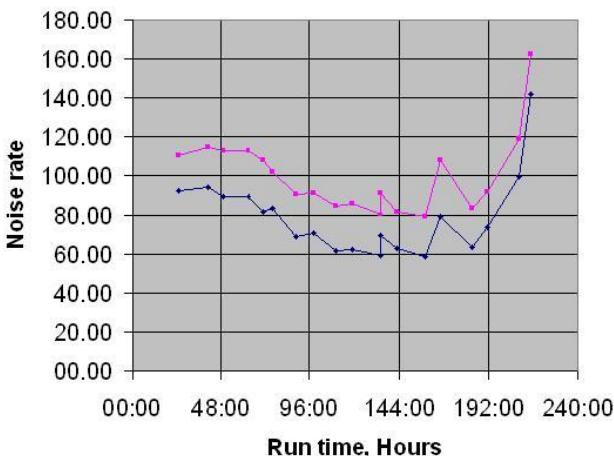


Figure 10. Noise rate history of the RPC

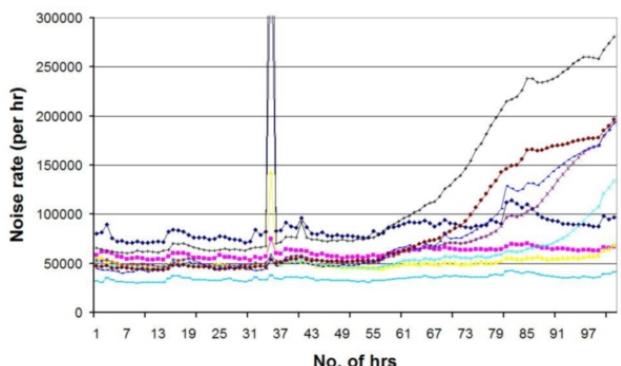


Figure 11. Individual strip rates of the RPC

those reported in the literature. We are however, currently facing a serious problem with regard to their sudden aging after continuous operation. The problem was observed both with the streamer and avalanche modes of operation. We have made some preliminary measurements on the moister content in the gas mixture that we use and found that the moister levels weren't high to cause such a damage. We have also installed moister filters on the gas lines, but found that that it did not solve the problem either. We have implemented better monitoring of moister levels using in-situ sensors, monitoring of various ambient parameters such as temperature, relative humidity and barometric pressure etc.

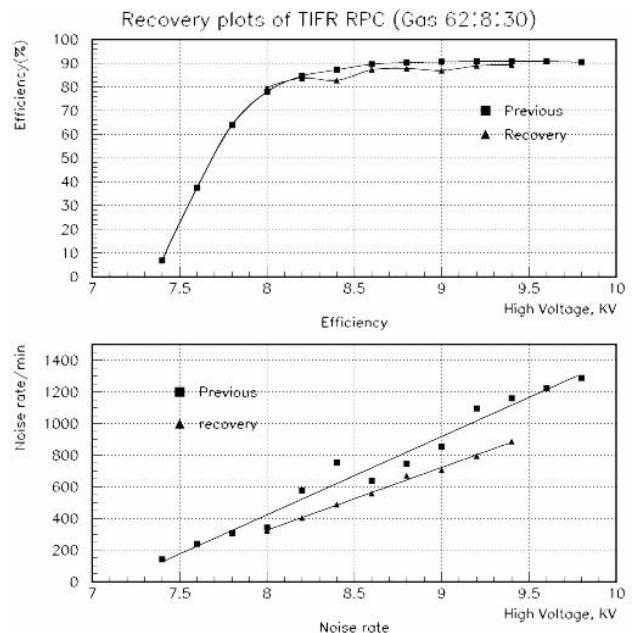


Figure 12. Efficiency (top) and noise rate (bottom) recovery of a damaged RPC

We have subsequently built a couple of chambers using glass sheets, which were procured from Japan and found that these chambers continue operate without any aging problem after several months. We are currently investigating the characteristics of this glass vis-a-vis the glasses that we had used for fabricating chambers till now.

REFERENCES

1. INO Collaboration, Interim Project Report, Volume 1, INO/2005/01
2. H.Sakai *et al.*, Study of the effect of water vapour on resistive plate chamber with glass electrodes, Nucl. Instr. Meth. A **484**, (2002) 153
3. Carlo Gustavino, Use of Glass RPC for underground experiments: status and perspectives, ASET Colloquium, TIFR, 2003
4. T.Kubo *et al.*, AFM pictures of the surfaces of glass RPC electrodes damaged by water vapour contamination, OCU-HEP, 2002-01