

Proposed Frontend Chip for INO

(DRAFT dt. May 18, 2004)

Requirements:

1. **Leading Edge Comparator for RPC**
2. **Single/Multiple channel (pref. 16 channels)**
3. **Serial/Parallel out** ?
4. **Clocked/Non clocked** ?

Important design issues:

Foundry ? (pref. SCL, Chandigarh)

Technology ? (pref. 1.2 μ m CMOS)

Input offset ?

Necessary for setting gain of the comparator

Propagation delay (max.) ?

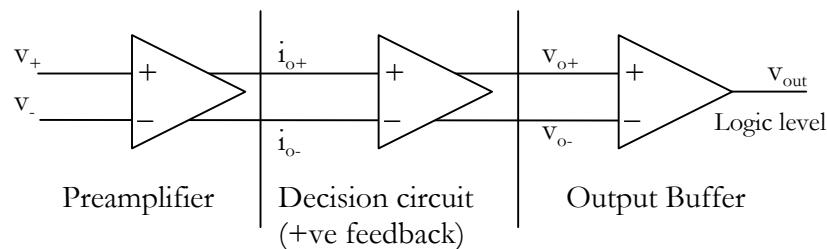
The time difference the input v^+ crossing the ref. voltage v^- and the output changing state

Hysteresis Yes/No

Necessary for slow varying signals and for noisy environment

Power consumption (max.) ?

Supply voltage ? (typical ± 2.5 for 1.2 μ m CMOS)


Slew rate (min.) ?

When the clock enables the system the comparator functions as usual and when the clock disables the system the comparator stops comparing and remains latched to the previous state.

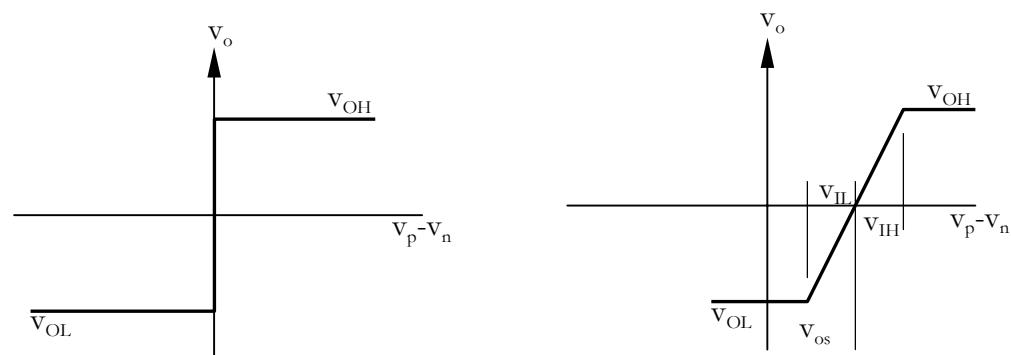
Topology ?

1. Open loop comparators (uncompensated OPAMPS) – faster
2. Regenerative comparators (uses +ve feedback) – lesser propagation delay and higher sensitivity.

Basic voltage comparator schematic:

- **The preamplifier**

The preamplifier increases the input sensitivity and isolates the input side from the switching noise originating from the +ve feedback stage.


- **Positive feedback stage (decision making circuit)**

This stage is used to determine which of the input signals is larger

- **Output buffer**

The output buffer amplifies the information and outputs a corresponding digital signal.

Model of a comparator:

Zero order transfer curve (ideal comparator)

First order transfer curve with offset (practical comparator)