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v Oscillation: experimental evidences . ..

Atmospheric Neutrino data from SuperKamiokande

Solar Neutrino Data from Homestake, SAGE, Gallex, GNO,
Kamiokande, SuperKamiokande, SNO (Phase-I,Phase-Il)

Data from Long baseline accelerator based experiment K2K

Long baseline reactor experiment KamLAND

Accelerator based oscillation experiment LSND

—not confirmed by Karmen
—Miniboone will provide independent check
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Parameters of Neutrino Mass Matrix

B Assume three neutrino flavours

Bl 9 unknown parameters in the light neutrino mass matrix
e 3 masses, my, mo and ms
e 3 mixing angles
e 1 Dirac CP phase
e 2 Majorana CP phases

B Oscillation experiments sensitive to
e 2 mass squared differences (Am?2s1, Am231 = Am?3,)
e 3 mixing angles (012, 613,623)
e 1 Dirac CP phase

Bl Majorana CP phases observable only in AL = 2 processes

Bl Absolute neutrino mass scale comes from
e Tritium beta decay
e Neutrino-less double beta decay
e Cosmology
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Solar Neutrinos

4p —* He + 2et + 2ve + 28MeV
e Two main cycles of nuclear reactions

pp chain: responsible for 98.5% of the energy
CNO cycle: responsible for 1.5% of the energy

] SuperK, SNO . ] .
Gallium _Chiorine ’ = I Eight different types of neutrino flux
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Solar Neutrinos: Summary of experimental results

e The ratio of the observed solar neutrino rates to the SSM predictions.

Homestake 3STCl+ ve =37 Ar4+e~  0.337 + 0.029
0.81 MeV, 8B,"Be
Gallex’'GNO/SAGE "'Ga+ve - Ge+e~  0.553 + 0.034
0.23 MeV, pp, 8B,” Be
SK e ‘v e +uy 0.465 + 0.014
5MeV, 8B
SNO CC d+ve +p+p+e” 0.309 + 0.19
SNO ES e +vy >e +uy 0.429 + 0.058
SNO NC d+ve 5> p+n+uv, 1.012 4+ 0.09

5 MeV, 8B

e Observed v, flux < Theoretical Prediction — solar Neutrino Problem

cCc _ Ve
NC = vetvu+vs

cc _ Ve
ES = ve+40.15(vy+vr)

< 1 — indicative of flavour conversion

< 1 — indicative of flavour conversion
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Solar Neutrinos: Status of Oscillation Parameters

Bl Amg = Am?s1, 05 = 612 from Global Solar Data

Bl BPO04 fluxes, 8B flux normalisation free
B3 Including the full salt data from SNO
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Solar Neutrinos: Status of Oscillation Parameters

10

Bl Amg = Am?s1, 05 = 612 from Global Solar Data

Bl BPO04 fluxes, 8B flux normalisation free
B3 Including the full salt data from SNO
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Solar Neutrinos: Status of Oscillation Parameters

10

Bl Amg = Am?s1, 05 = 612 from Global Solar Data

Bl BPO04 fluxes, 8B flux normalisation free

B3 Including the full salt data from SNO
eBest fit
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Solar Neutrinos: Status of Oscillation Parameters

10

Bl Am? = Am?s1, 0o = 612 from Global Solar Data

Bl BPO04 fluxes, 8B flux normalisation free

B3 Including the full salt data from SNO
e 99% range(Ax? = 9.21)

Solar(’BP04) [pre—sath
(before sept 2003)
/0.6 0.5

Solar(BP04) [post—sa(li]
(after’'march 2005) /
//6.6 e 0.5

- 10°

107

Am221 =(31-257) x10~%eV?
sin® 015 = 0.21 -0.44
....(before salt)

Am221 :(33-184) x10~°eV?
SiIl2 912 =0.24 -0 41
.... (after salt)
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Solar Neutrinos: Status of Oscillation Parameters

10

10

-5

Bl Am? = Am?s1, 0o = 612 from Global Solar Data

Bl BPO04 fluxes, 8B flux normalisation free

B3 Including the full salt data from SNO
e 99% range(Ax? = 9.21)
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B Upper limit on Am?5; and sin? 015 tightens with salt data
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Impact of KamLAND on Oscillation Parameters

B3 1 kton liquid scintillator neutrino detector at Kamioka
Bl 7. source: 16 main reactors at distances 81-824 km
BJ most powerful reactors are at 160 km

B detects reactor antineutrinos through: v, +p — n +e™
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Impact of KamLAND on Oscillation Parameters

First KamLAND results

BJ Evidence of v, disappaerance

20k —— reactor neutrinos
- = Qgeo neutrinos
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Impact of KamLAND on Oscillation Parameters

Second KamLAND results

B3 Evidence for spectral distortion at 99.6% significance
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Impact of KamLAND on Oscillation Parameters

B Survival Probability : P(7, < 7.) = 1 — sin® 20 sin? (1-27]?:1%)

Bl Sensitive to LMA region (assuming CPT conservation)

: Global Solar | Solar + KamLAND |  Solar + KamLAND
162 Ty Data 1 766.3 Ty Data

1.6e—04

-

6.0e—05

1.0e—05

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.5
- 2 - 2 - 2
sin“6,, sin“6,, sin“6,,

Bl Solar data disallows 6 > 7 /4 (Dark-Side) solutions
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Survival Probabilites for solar and KamLAND
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Evidence for MSW effect in Sun

number of sigma

Bounds on ayusw (Solar + CHOOZ + KamLAND)

standard
matter
effects

| RRRRRRREE Zeroed ................ J/ ..................................

| < matter
effects

U psw

Viesw = V2Grne
Visw — apsw.V

Bl "No MSW" rejected
at several o

Fogli et al. 2005

2 o
i L . taHQQ"{é: Am~2; sin 2609
10 10 1 10 10°

Am?2451 cos 2012—2\/§GF7’L6

Bl For Resonance Am?25;cos 2015 > 0
Bl psolar(8B) = 0.5 (1 — cos2612)
Bl Solar data 0 P (8B) < 0.5
B [ cos26:5 > 0 (Dark-Side gone)
Bl 0 Am?5; >0
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On the precision of v, oscillation parameters

spread = Amaz — Gmin 100 9%

Amazx + Amin

Data set Range™ of spread in Range® of  spread in

used Am?51 x 107% eV Am?o sin? 614 sin? 614
only sol 3.2-14.9 65% 0.22 — 0.37 25%
sol+162 Ty KL 5.2-9.8 31% 0.22 — 0.37 25%
sol+ 766.3 Ty KL 7.3-94 13% 0.22 — 0.36 24%
s0l2005+766.3 Ty KL 7.2-9.2 12% 0.25 — 0.39 22%

*99% C.L. (Ax? = 9.21, 2 parameters)
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On the precision of v, oscillation parameters

spread = Amaz — Gmin 100 9%

Amazx + Amin

Data set Range™ of spread in Range® of  spread in

used Am?51 x 107% eV Am?o sin? 01 sin? 01
only sol 3.2-14.9 65% 0.22 — 0.37 25%
sol+162 Ty KL 5.2-9.8 31% 0.22 — 0.37 25%
sol+ 766.3 Ty KL 7.3-94 13% 0.22 —0.36 24%
s0l2005+766.3 Ty KL 7.2-9.2 12% 0.25 — 0.39 22%

*99% C.L. (Ax? = 9.21, 2 parameters)

Bl KamLAND has tremendous sensitivity to Am?s;

BJ Does not constrain #,5 much better than the current set of solar

experiments
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Sensitivity of KamLAND for 61

e P..?%¢ = 1 — sin? 204 sin? (
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(KamLAND Collaboration, hep-ex/0212021)

Best-Fit: sin? 012 = 0.3

Range: 0.25 < sin® 65 < 0.39

B KamLAND is at SPMAX

B The 6;5 sensitivity gets smothered

B KamLAND is not at best position for 612
BJ SPMIN at L ~ 60 km for present best-fit Am?2a;

A. Bandyopadhyay , S.Choubey, S.G. PRD, 2003
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Atmospheric neutrinos

[1 Advantage: single detector and 2 equal sources.
[1 Main goal: Study oscillation pattern in atmospheric
neutrino events. down '

il

ACT+AaiT_)7T+—|—.” 5
Tt = ut 4y,

pt —et+0,+ v,

Nup(L/E)

Ndown(L/E) = PM,LL / up
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Atmospheric Neutrino Oscillation Parameters . ..

Bl Two generation v, — v, oscillation (04t = 023, Am

B P, =1- sin? 26 44,, sin’ (

| & Oo3 — (7T/2 — 923) symmetry

10

Am? (eVZ)

10

-2

Am>

atmL
4F

99% C.L.
90% C.L.
68% C.L.

-

.t
e

0.8 0.85

2

Y. Ashie et al. hep-ex/05404034

atm

= Am?3,)
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Atmospheric Neutrino Oscillation Parameters . ..

Bl Two generation v, — v, oscillation (84t = 023, Amz,,,, = Am?32)
. 9 . 9 Amz m L
Bl P, =1-—sin" 204, sin (W)
Bl 055 — (7/2 — 633) symmetry
2 B Best-fit
V0V 7717 17 717 1
[ | Am?2, = 21 x1073 eV?
- . sin? 20¢m = 1.0
(\l> et
2
2 I
£
J
- e 99% C.L.
— 90% C.L.
---------- 68% C.L.
10'3.|.|.|.|.|.

07 075 08 085 09 0.95 1

Y. Ashie et al. hep-ex/05404034
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Atmospheric Neutrino Oscillation Parameters . ..

Bl Two generation v, — v, oscillation (84t = 023, Amz,,,, = Am?32)
2
B P, =1—sin® 204y, sin’ (%)
Bl 055 — (7/2 — 023) Symmetry
0 B 35 range (Ax2 = 9, 1 parameter)
— 71 1 ' T 1T ™ 1
[ I Am2, =13-4.2x1073 eV,
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~ | . 9 . 9
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,,,,,,,,,, 58% L. sin ?023 pr_ec_:lsmn near
4 maximal mixing
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Y. Ashie et al. hep-ex/05404034
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Allowed area from K2K Experiment

e Py = 1 — sin? 20,4, sin’ (

Bl L ~250km, £, ~1.3 GeV

Am?
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< T =
@ ] _ ]
g | — —
-2 ""‘-;
10 2 u- N -
_3- e
10 F -
[ — 68%
[ — 90%
- —99%
_4 1 1 1
10 o002 02 06 08 1
sin“26

eBest-fit
Am?2, =2.8 x1073 eV?

sin® 20,4, = 1.0

K2K collaboration, 2003

Srubabati Goswami, August 2005 — p.18/27



20

Am?2, = 23 x1073 eV?,

sin? Oq¢m = 0.5 (ATM +K2K)

15

Maltoni et al.,hep-ph/0405172
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BJ Higher Am? values are constrained by K2K
BJ K2K data does not constrain 6, any better
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Three Generation Analysis

BJ Non-zero 63 couples solar and atmospheric

e Status of 013

3v oscillation parameter bounds on Vs
——— 7 ————————

Bl Combined analysis :
sin? 615 < 0.04 (30)

BJ Bound sensitive to value of
Am231

N Gl

BJ Two generation allowed areas
stable

number of sigma

G. L. Fogli et al. ,hep-ph/0506083

L INE | L L L | L L L | L L L | L L L ]
O 0.02 0.04 0.06 0.08 0.1

o 2
siNn” 1Y, 5

Srubabati Goswami, August 2005 — p.20/27



Accommodating the LSND Signal

B Evidence for oscillations for = Am? ~ eV?
B3 Adding extra sterile neutrinos
B CPT violation

2 4 : " One additional sterile neutrino
4 | 2 I 4
m? LAM | 2+2 and 3+1 mass schemes
’ : ALSND
Asp ;
: 2 $4— m32
: Am -
2 v v 2
:22 l Amzsol ? m22
1 v v m1
2+2 3+1
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B The 2+2 scheme is ruled out by the solar and atm data
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Maltoni et al, hep-ph/0405172

B3 Oscillations to pure sterile states is strongly disfavored by both the
solar and atmospheric data
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Accommodating the LSND Signal

BJ The 3+1 scheme is strongly disfavored by the SBL data

I I LI Il)ﬂ I 1 1 II{I' I I L III' I I UL
B S — NEV + atm + K2K []
10 <l == R NEV + atm(1d) |
E " E
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B - ]
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X
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: 1 1 | | I\\III 1 I“‘I- IIIII 1 1 11 IIIII
10 1073 107° 10" 10°
sinZZGLSND

Maltoni et al, hep-ph/0405172

B3 Very small area allowed at the 99% C.L.
BJ What if LSND is confirmed by MiniBOONE ??
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Neutrino Less Double Beta Decay

(m) = |m1|Ue1|? + m2|Uec2|?€*®1 + m3|Uesz|?2e*?2|

e Neutrino Mass Spectrum e Absolute Neutrino Mass Scale e CPV phases
1 ;

NH: m1 << mog << m3

=
Q
-

IH: m3 << m1 & mg

=
Q
N

QDI mi1 & mg X ms

| Mee | INEV

[HEN
=
w

e (< m >) is in the range of sensitivity of
upcoming Ov 33 experiments for IH and QD

e Uncertainties coming from Nuclear matrix
elements

- 99%CL (1

(I _______ a— |

10 10° 10° 10! 1
lightest neutrino massin eV

Vissani and Strumia,hep-ph/0503246
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B Atleast 3 flavors involved in oscillation

2
m, + —
3 A
. atmospheric
L~ 2X107 eV
2| v
p | TR o,
5| 1 solar ~ 7x10" eV
m, "+ -
)
0 +—"—

e Best-fit

Am?51 =8.0 x10~° eV?2, sin26:9 = 0.3
Am§2 =21 x10~3 eV2, sin? 023 = 0.5,
Sin2 913 = 0.01

0.84 0.4 0.1
U=1|-044 0.56 0.71
0.32 —-0.63 0.71

Bl Am?y; > 0 (from solar data)
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Summary-ll:What we don’t know

What are the precise values of Am?251 and sin? 612?
What are the precise values of Am2, and sin? 623?

s sin? 2653 exactly maximal?

What is the sign of Am§2 (Nature of mass spectrum)?
How small is sin? 013? Is it zero?

Are 3 flavor oscillations enough?

Is the CP phase non-zero?

Are Neutrinos Dirac or Majorana?

What is the absolute neutrino mass scale?

Is there a link between low energy CPV in the lepton sector and Baryogenesis via

Leptogenesis?

Origin of Neutrino masses at a fundamental level
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Summary-ll:What we don’t know

What are the precise values of Am?251 and sin? 612?
What are the precise values of Am2, and sin? 623?

s sin? 2653 exactly maximal?

What is the sign of Am§2 (Nature of mass spectrum)?
How small is sin? 013? Is it zero?

Are 3 flavor oscillations enough?

Is the CP phase non-zero?

Are Neutrinos Dirac or Majorana?

What is the absolute neutrino mass scale?

Is there a link between low energy CPV in the lepton sector and Baryogenesis via
Leptogenesis?

Origin of Neutrino masses at a fundamental level

e Next Generation Experiments e
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Summary-Ill: Future RoadMap

BJ Future Solar Neutrino Data
e SNO - Phase 3
e Borexino
e LOWNuU

B Future Reactor Neutrino Data
e More Statistics from KamLAND
e New Reactor experiment for 612
e ©13 Projects : Clean Determination of 613

B Future Atmospheric Neutrino Data
e More statistics from SuperK
e Megaton water cerencov detectors, HyperkK,UNO
e Magnetised Iron Calorimeter detectors, INO

B rFuture Accelerator Neutrino Data
e Longbaseline Projects, MINOS,CNGS
e Longbaseline with Superbeams, Nova,T2K
e Beta Beams
e Neutrino Factories

B Three or More
e MiniIBOONE

B Absolute Neutrino Mass scale
e Beta Decay experiment with increased sensitivity, Katrin
e Qv 33 experiments increased sensitivity
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B The small observed neutrino masses cannot be explained by
Standard Model

B3 The only observational signal of physics Beyond the Standard
Model

B3 Theoretical challenges
B Why m,, < m;,m,,mg

Bl Why two large and one small angle in neutrino sector while all
the angles in quark sector are small

Bl Hierarchy for neutrino masses not strong
Can even be degenerate!

B3 Hierarchy, 8,3, deviation from maximality [J good discriminator of
mass Models

B3 Precision neutrino measurements can help in choosing between
various alternatives
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