
Current limits on Neutrino Masses and mixings

Srubabati Goswami

Harish-Chandra Research Institute,
Allahabad, India

Talk presented by

Abhijit Bandyopadhyay
Tata Institute of Fundamental Research, Mumbai

Physics with Atmospheric Neutrinos and Neutrinos from Muon Storage Rings

August 1-2, IIT Mumbai

Srubabati Goswami, August 2005 – p.1/27



Plan of Talk

The Observational Evidence

Current status of the neutrino oscillation parameters� Solar Neutrinos� Reactor Neutrinos� Atmospheric Neutrinos� Accelerator Neutrinos

Accommodating LSND

Constraints on Absolute Masses

Summary

Conclusions and Outlook

Srubabati Goswami, August 2005 – p.2/27



� Oscillation: experimental evidences � � �

Atmospheric Neutrino data from SuperKamiokande

Solar Neutrino Data from Homestake,SAGE, Gallex, GNO,
Kamiokande, SuperKamiokande, SNO (Phase-I,Phase-II)

Data from Long baseline accelerator based experiment K2K

Long baseline reactor experiment KamLAND

Accelerator based oscillation experiment LSND
–not confirmed by Karmen
—Miniboone will provide independent check
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Parameters of Neutrino Mass Matrix

Assume three neutrino flavours

9 unknown parameters in the light neutrino mass matrix� 3 masses, ��� , ��� and ���� 3 mixing angles� 1 Dirac CP phase� 2 Majorana CP phases

Oscillation experiments sensitive to� 2 mass squared differences (
� � � � � ,

� �� � � 	 � �� � � )� 3 mixing angles (


� � ,


� � ,


� � )� 1 Dirac CP phase

Majorana CP phases observable only in

�� � 


processes

Absolute neutrino mass scale comes from� Tritium beta decay� Neutrino-less double beta decay� Cosmology
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Solar Neutrinos

��� � � ��� � � � � � ���� � �� ��� � Two main cycles of nuclear reactions
pp chain: responsible for 98.5% of the energy
CNO cycle: responsible for 1.5% of the energy

Eight different types of neutrino flux pp,pep,hep,

!#" � ,

$ "
, %& '

,
%( )

,

% !+*

pp � solar luminosity
least uncertain

$ "

flux is most uncertain
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Solar Neutrinos: Summary of experimental results

 The ratio of the observed solar neutrino rates to the SSM predictions.

Homestake

& !-,. � �� �& !0/ 1 � � 2 0.337

3

0.029

0.81 MeV,

$ "

,

! " �

Gallex/GNO/SAGE

! %04 5 � �� � ! % 4 � � � 2 0.553

3

0.034

0.23 MeV, � �,

$ "

,

! " �

SK � 2 � ��6 � � 2 � ��6 0.465
3

0.014

5 MeV,

$ "

SNO CC

7 � ��� � � � � � � 2 0.309

3
0.19

SNO ES � 2 � ��6 � � 2 � ��6 0.429

3
0.058

SNO NC

7 � �86 � � �:9 � �6 1.012

3

0.09

5 MeV,

$ "

 Observed � � flux ; Theoretical Prediction � solar Neutrino Problem

 < <= < > ?:@? @ � ?:A � ?+B ; C � indicative of flavour conversion

 < <DE > ? @? @ � FHG % ( I ?+A � ? B J ; C � indicative of flavour conversion
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Solar Neutrinos: Status of Oscillation Parameters

� ��LK M � �� � � ,


K M 
� � from Global Solar Data

BP04 fluxes,

N+O

flux normalisation free

Including the full salt data from SNO
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Solar Neutrinos: Status of Oscillation Parameters

� ��LK M � �� � � ,


K M 
� � from Global Solar Data

BP04 fluxes,

N+O

flux normalisation free
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Solar Neutrinos: Status of Oscillation Parameters

� ��LK M � �� � � ,


K M 
� � from Global Solar Data

BP04 fluxes,
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flux normalisation free
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Solar Neutrinos: Status of Oscillation Parameters
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Upper limit on

� � � � � and U V W � 
� � tightens with salt data

Srubabati Goswami, August 2005 – p.7/27



Impact of KamLAND on Oscillation Parameters

1 kton liquid scintillator neutrino detector at Kamiokaacbed source: 16 main reactors at distances 81-824 km

most powerful reactors are at 160 km

detects reactor antineutrinos through:

acb d f:g hi f:j k
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Impact of KamLAND on Oscillation Parameters

First KamLAND results

Evidence of
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Impact of KamLAND on Oscillation Parameters

Second KamLAND results

Evidence for spectral distortion at 99.6% significance
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Impact of KamLAND on Oscillation Parameters

Survival Probability :

l m acb d n acbod p � Qrq U VXW � 
 
 U V W � s �[t � u v8w xzy{}|
~

Sensitive to LMA region (assuming CPT conservation)
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Survival Probabilites for solar and KamLAND
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Evidence for MSW effect in Sun

�}� �� � � 
 ��� i d��� �� h� � �� _ �
"No MSW" rejected
at several �

Fogli et al. 2005

��� W 
 
w� � � vw x x� � ��� � �� xv8w x x� �� � � �� x S � �� ��� � @ {

For Resonance

� � � � � �� U 
 
� � � R

l ¡ ¢¤£¥d d m NO p � R _ ¦ m Qrq §¨© 
 
� � p

Solar data ➯

l  ¡ ¢¤£¥d d m N:O p«ª R _ ¦

➯ �� U 
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Status of Solar Neutrino Oscillation Parameters
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Also Vissani and Strumia, Fogli et. al

Maximal mixing ruled at almost 6 �
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On the precision of �]· oscillation parameters
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On the precision of �]· oscillation parameters
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KamLAND has tremendous sensitivity to
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Sensitivity of KamLAND for

Ä Q 


Å� � ÆÇÈ > CÊÉ ² ³�´ ¯ �µ % ¯ ² ³�´ ¯ ËÍÌ Î x x� Ï� D Ð

² ³�´ ¯ ËÍÌ Î x x� Ï� D Ð � C Ñ SPMIN, ² ³�´ ¯ ËÍÌ Î x x� Ï� D Ð � ± Ñ SPMAX

SPMIN best for ² ³�´ ¯0µ % ¯ for ² ³�´ ¯0µ Ò+Ó ;±ÕÔ �

(KamLAND Collaboration, hep-ex/0212021)

Best-Fit: ² ³�´ ¯-µ % ¯ > ±ÕÔ Ö
Range:

±Ô �× ; ² ³�´ ¯-µ Ò ; ±ÕÔ ÖØ ➼

KamLAND is at SPMAX

The
µ % ¯ sensitivity gets smothered
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µ % ¯

SPMIN at

Ù Ó Ú±

km for present best-fit

¬­ ¯ ¯ %

A. Bandyopadhyay , S.Choubey, S.G. PRD, 2003
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Atmospheric neutrinos

➢ Advantage: single detector and 2 equal sources.
➢ Main goal: Study oscillation pattern in atmospheric
neutrino events.

ÛÝÜ 1 Þ Û 5 ß 1 àá � Þãâ â â
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Atmospheric Neutrinos:Experimental Results
SK-I 1489 days zenith angle spectrum
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Atmospheric Neutrino Oscillation Parameters � � �

Two generation bùø q bûú oscillation (


£ üw M 
� � ,

� ��£ üw M � �� � � )
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Y. Ashie et al. hep-ex/05404034
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Atmospheric Neutrino Oscillation Parameters � � �

Two generation bùø q bûú oscillation (


£ üw M 
� � ,

� ��£ üw M � �� � � )
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Best-fit

¬­ ¯Ç � Î = 2.1 ° C± 2 & eV

¯

,² ³�´ ¯ �µ Ç � Î > CÔ ±
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Atmospheric Neutrino Oscillation Parameters � � �

Two generation bùø q bûú oscillation (


£ üw M 
� � ,

� ��£ üw M � �� � � )

lø ø � Qrq U V W � 
 
£ üw U V W � vw xþý ÿ� y
� {


� � q m � � 
q 
� � p

symmetry

10
-3

10
-2

0.7 0.75 0.8 0.85 0.9 0.95 1

sin22θ

∆m
2  (

eV
2 )

68% C.L.
90% C.L.
99% C.L.

Y. Ashie et al. hep-ex/05404034

3 ¶ range (
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 ¿
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Allowed area from K2K Experiment

l�� � � Q q U VXW � 
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Allowed parameters from SK+K2K analysis
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Three Generation Analysis

Non-zero


� � couples solar and atmospheric

� Status of


� �

Combined analysis :U VXW � 
� � �ª R _ R �

(

Á �)
Bound sensitive to value of� �� � �

Two generation allowed areas
stable

G. L. Fogli et al. ,hep-ph/0506083
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Accommodating the LSND Signal

Evidence for oscillations for � � � � � eV

�

Adding extra sterile neutrinos

CPT violation
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Accommodating the LSND Signal

The 2+2 scheme is ruled out by the solar and atm data

0 0.2 0.4 0.6 0.8 1

ηs

0

10

20

30

40

50

∆
χ

2

99% CL (1 dof)

so
la

r 
+

 K
a
m

L
A

N
D

s
o
la

r

so
la

r (
pr

e 
SN

O
 s

al
t)

0 0.2 0.4 0.6 0.8 1

ηs

χ2
PG

χ2
PCatm

 + K2K + SBL

global

so
la

r 
+
 K

a
m

L
A

N
D

0 0.05 0.1 0.15 0.2

dµ

a
tm

o
sp

h
e
ri
c 

+
 K

2
K

99% CL (1 dof)

Maltoni et al, hep-ph/0405172

Oscillations to pure sterile states is strongly disfavored by both the
solar and atmospheric data
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Accommodating the LSND Signal

The 3+1 scheme is strongly disfavored by the SBL data
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Very small area allowed at the 99% C.L.

What if LSND is confirmed by MiniBOONE ??
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Neutrino Less Double Beta Decay
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Summary-I: What we know

Atleast 3 flavors involved in oscillation
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Summary-II:What we don’t know

What are the precise values of

¬­ ¯ ¯ % and ² ³�´ ¯-µ % ¯?
What are the precise values of

¬­ ¯& ¯ and ² ³�´ ¯-µ ¯& ?

Is ² ³�´ ¯ �µ ¯& exactly maximal?

What is the sign of

¬®­ ¯& ¯ (Nature of mass spectrum)?

How small is ² ³�´ ¯-µ %& ? Is it zero?

Are 3 flavor oscillations enough?

Is the CP phase non-zero?

Are Neutrinos Dirac or Majorana?

What is the absolute neutrino mass scale?

Is there a link between low energy CPV in the lepton sector and Baryogenesis via
Leptogenesis?

Origin of Neutrino masses at a fundamental level
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Summary-II:What we don’t know

What are the precise values of

¬­ ¯ ¯ % and ² ³�´ ¯-µ % ¯?
What are the precise values of

¬­ ¯& ¯ and ² ³�´ ¯-µ ¯& ?
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Is the CP phase non-zero?

Are Neutrinos Dirac or Majorana?

What is the absolute neutrino mass scale?

Is there a link between low energy CPV in the lepton sector and Baryogenesis via
Leptogenesis?

Origin of Neutrino masses at a fundamental level

 Next Generation Experiments  
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Summary-III: Future RoadMap
Future Solar Neutrino Data SNO - Phase 3 Borexino LowNu

Future Reactor Neutrino Data More Statistics from KamLAND New Reactor experiment for

µ % ¯ � %& Projects : Clean Determination of

µ %&

Future Atmospheric Neutrino Data More statistics from SuperK Megaton water cerencov detectors, HyperK,UNO Magnetised Iron Calorimeter detectors, INO

Future Accelerator Neutrino Data Longbaseline Projects, MINOS,CNGS Longbaseline with Superbeams, Nova,T2K Beta Beams Neutrino Factories

Three or More MiniBOONE

Absolute Neutrino Mass scale Beta Decay experiment with increased sensitivity, Katrin ± � � �

experiments increased sensitivity
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Conclusion and Outlook

The small observed neutrino masses cannot be explained by
Standard Model

The only observational signal of physics Beyond the Standard
Model

Theoretical challenges

Why � ��  � ¢"! �$# ! �%

Why two large and one small angle in neutrino sector while all
the angles in quark sector are small

Hierarchy for neutrino masses not strong
Can even be degenerate!

Hierarchy,


� � , deviation from maximality ➯ good discriminator of
mass Models

Precision neutrino measurements can help in choosing between
various alternatives
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