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The charge-neutral spin-1/2 neutrino was proposed by Pauli;
restores energy-statistics conservation in nuclear beta decay.

Neutrinos occur in at least three flavours, partnering leptons e,
W, T.

The Standard Model of Particle Physics assumes neutrinos are
massless, consistent with known data from beta decay. Best
limits on neutrino mass are from tritium beta decay.

It is now conclusively established that neutrinos are not
massless.

Furthermore, neutrino flavours mix guantum-mechanically, so
that, as they propagate, they exhibit the phenomenon of
oscillation.

This means that at least two of the masses should be distinct.
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How do we know this?

Bl The Homestake Chlorine experiment by Davis and collaborators first
observed a deficit in the observed solar neutrino flux.

Bl The Super-Kamiokande real-time water Cerenkov experiment proved
that the observed neutrinos indeed originated in the Sun.

Bl The SNO heavy water experiment provided the very important
corroboration that the electron neutrino flux is depleted while the
solar neutrino flux is consistent with theory.

Bl The Super-Kamiokande experiment also showed that
(and anti-neutrinos) were depleted; atmospheric
electron neutrinos (and anti-neutrinos) did not seem significantly
different from expectations.

Bl More precisely, the ratio of observed to expected muon neutrinos was
depleted, especially for neutrinos that had travelled a large path-length
through the Earth before they were observed in the detector.
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A Schematic of Neutrino Properties

Neutrino masses are not well-known. Oscillation studies only
determine the mass-squared differences: Am;; = m? — m7 and the

mixing angles 6;;.
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A Schematic of Neutrino Properties

Neutrino masses are not well-known. Oscillation studies only
determine the mass-squared differences: Am;; = m? — m7 and the
mixing angles 6;;.
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In Summary

Neutrinos are the least understood particles in nature.

They have exotic properties: non-zero, distinct masses, and
non-trivial mixing among the different flavours: this is because
of compelling evidence for neutrino oscillation.

While the depletion effects of oscillation are well-studied, a
complete oscillation (with one minimum and one maximum) has
not yet been directly studied in any single experiment and has
only been inferred.

The mass-squared differences as well as the masses are very
small; the origin of small masses is a puzzle.
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The INO Collaboration

B Stage | : Study of atmospheric neutrinos

The feasibility study of about 2 years duration for both the
laboratory and detector is under-way. Issues under study are
B Site Survey

Bl Detector R & D, including construction of a prototype
Bl Physics Studies

Bl Human resources development

Bl After approval is obtained, actual construction of the laboratory
and ICAL detector will begin
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B Stage | : Study of atmospheric neutrinos

The feasibility study of about 2 years duration for both the
laboratory and detector is under-way. Issues under study are

B Site Survey

Bl Detector R & D, including construction of a prototype
Bl Physics Studies

Bl Human resources development

Bl After approval is obtained, actual construction of the laboratory
and ICAL detector will begin

Bl Stage |l : Study of long-baseline neutrinos, from a neutrino
factory?

Bl Other detectors/physics like neutrinoless double beta decay?

Bl Should be an international facility
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Site survey: PUSHEP

PUSHEP In the Nilagiris, near Ooty (Masinagudi)




Site Survey: Rammam
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Muon Intensity (m2sr

The depth at the sites
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The difficulty ... and the hope
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The choice of detector

The detector should have the following features:
B Large target mass: 30 kton, , 100 kton . ..
B Good tracking and energy resolution

B Good directionality; hence nano-second time resolution
for up/down discrimination

B Good charge resolution
B Ease of construction (modular)

Use (magnetised) iron as target mass and RPC as active
detector element

Note: Is sensitive to muons only
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The ICAL detector
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The active detector elements: RPC

RPC Construction: Float glass, graphite, and spacers

Two 2 mm thick float Glass
Separated by 2 mm spacer

Piclmyp strips

(Glass plates

Complete RPC Graphite coating on the outer sarfaces of glass
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Fabricating RPC’s

at TIFR ...

And of course ...
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Specifications of the ICAL detector

ICAL
No. of modules 3
Module dimension 16m x 16 m x 12 m
Detector dimension 48 m x 16 m x 12 m
No. of layers 140
Iron plate thickness ~ 6 Ccm
Gap for RPC trays 2.5 cm
Magnetic field 1.3 Tesla
RPC
RPC unit dimension 2mx2m
Readout strip width 3cm
No. of RPC units/Road/Layer 8
No. of Roads/Layer/Module 8
No. of RPC units/Layer 192
Total no. of RPC units ~ 27000
No. of electronic readout channels | 3.6 x 10°
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RPC Efficiency studies

Using different combinations of gas

TIFR RPC Efficiency
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RPC Time resolution

Time Resolution

Time Resolution(nsec)
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Otherissues w..t RPCR & D

B RPC timing

B RPC charge distribution

B Mean charge vs voltage (seen to be linear)
B RPC noise

B Gas composition (CyHy Fy (R-134a), Argon, Isobutane
(< 8%))

B RPC Cross talk (as a function of gas mixture)
B Gas mixing
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Magnet studies

Design criteria:

B Field uniformity
B Modularity
B Optimum copper-to-steel ratio

B Access for maintenance Toroidal Magnet design
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The prototype magnet

B 13 layersof 1 m x 1 m 6 cm thick iron

B It may be easier to use a Helmholtz-coil pair magnet
with yoke

The VECC scaled-down 1:100 model agrees quite well with
a 2D magnet code.
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All new studies with MagNet6.0 3D software



TRIGGER

TDC

Event Scalers

Control Logic

" Serial Readout
| WMonttor Scalers .
sl A schematic of the
read-out electronics
= for the prototype
(LINUX)
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Physics with Atmospheric Neutrinos

Bl Simplified ICAL detector geometry encoded in Nuance neutrino
generator.

Bl Events are generated using HONDA flux with some input
oscillation parameters d-3, 023, and 6;3.

Bl Analysis ONLY of CC events with p in the final state (electron
CC events mostly lost); typically interesting events have
E > 1-2 GeV.

Bl These events are passed through a simulated ICAL detector
using the GEANT detector simulation tool.

(9 (in the z- and y-directions only have
been studied.

Bl The tracks are reconstructed for muons and the
energy/momentum/charge determined.

Bl Recall: ICAL geometry is similar to that of

ICRC 2005, Pune, Aug 3-10, 2005 - p. 25



Event Reconstruction
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Hadron Energy Reconstruction
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Physics goals

[1 Main goal: Study oscillation pattern in atmospheric neutrino
events. The up/down events ratio Is sensitive to oscillation
parameters.

down

(Pietropaolo and Picchi)

up rate sin? fas L
=P, =R 1 — 1 — 2.54 093 — :
down rate ~"* “ { 2 ( " “E

R is determined by the L/E resolution of the ICAL detector

So, analysis needs a knowledge of this resolution function, which
depends on the quality of reconstruction of tracks in the detector.
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Results for the FC case withB, = 1T
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Aatter effects with atmospheric neutrinos
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Bl Matter effects involve the participation of all three (active)
flavours; hence involves both sin #;3 and the CP phase /.
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Other physics possiblilities

... with atmospheric neutrinos

B Discrimination between oscillation of v, to active v, and
sterile v, from up/down ratio in “muon-less” events.

(] from rates of neutrino- to rates of
anti-neutrino events in the detector: sensitive to b,
which adds to Am3,/(2F) in oscillation probability
expression.

B Constraining long-range leptonic forces by introducing a
matter-dependent term in the oscillation probability even
In the absence of U.3, so that neutrinos and
anti-neutrinos oscillate differently.
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Status Report

INDIA-BASED NEUTRINO OBSERVATORY
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Stage Il: Physics goals

Stage Il: Neutrino factories and INO (ICAL++)
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Stage Il: Physics goals

Stage Il: Neutrino factories and INO (ICAL++)

B Burning issue in neutrino physics: is the 1-3 mixing
angle zero or not? If sin 613 # 0, can look for

B A determination of sin 63 I1tself
| sign of the (23) mass-squared difference 32 = m3 — m3

B CP violation through a CP violating phase 4 that occurs

In the mixing matrix when there are three active coupled
neutrino species.

B Such studies can be done with neutrino beams from
neutrino factories (with muon storage rings). Far into

future, but lots of work going on (see neutrino oscillation
iIndustry web-page)

B INO (ICAL++) is a possible far-end detector for such
long baseline experiments
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Stage lI: Inputs

B Muon detection threshold = 2 GeV
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Stage lI: Inputs

B Muon detection threshold = 2 GeV
B Muon energy resolution = 5%.

B All measurements involve wrong sign muon detection;
hence have low backgrounds

B Beam has v. and 7, (or other way).
B 7, — ; (detector)
ve (beam) — v, (oscillation)

v, (0sc-beam) — p (detector)

B Result: wrong sign muon (10/kton = signal)

Note: Since ICAL is not very sensitive to electrons, the
mode in which the wrong-sign event is from electron
detection (sensitive to P,.) Is not considered here.
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Reach ofsin 653

JHF to Rammam Fermilab to PUSHEP
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sin #13 reach for different muon threshold energies.
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Sign of Ams3, vs wrong signy

JHF to Beijing, Rammam and PUSHEP
120 — . : . .
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CP violation: o vs L
JHF to Rammam and PUSHEP
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Other studies at INO

B Neutrino-less double beta decay. A working group Is
looking at the possibility of cryogenic detection to
measure DBD in 1?4Sn and ™°Nd.

[ for nuclear astrophysics. A
proposal to study some thermonuclear reactions using a
3 MV tandem accelerator has been proposed.
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Outlook

Bl Proof-of-principle working of RPC shown

B Magnet studies under-way

Bl Detector prototype is ready for construction

Bl Site survey: two possible sites, both seem good options

B Simulations: programs in place, need refining and testing.
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Outlook

B Atmospheric neutrino programme:

ICAL sensitive to oscillation parameters to better accuracy than
current Super-K.

Also, may have the edge on MINOS iff Am3, is smaller than
expected.

May be sensitive to matter effects and the 2—3 mass ordering if
sin” 2613 > 0.05.
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Outlook

B Atmospheric neutrino programme:

ICAL sensitive to oscillation parameters to better accuracy than
current Super-K.

Also, may have the edge on MINOS iff Am3, is smaller than
expected.

May be sensitive to matter effects and the 2—3 mass ordering if
sin” 2613 > 0.05.

Bl Neutrino Factory Programme:

ICAL++, with suitable beam from future nu-factory, is sensitive
to sin? 26,3, sign of d23, and CP phase (?) due to the very large
baselines involved.

JHF-PUSHEP baseline is near magic: may provide clean
separation of matter and CP violation effects.
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In short . ..

The outlook looks good! This is a massive project:

Looking for active collaboration both within India and abroad

e Bhabha Atomic Research Centre (BARC), Mumbai:
V. Arumugam, Anita Behere, M. S. Bhatia, V. B. Chandratre,
V. M. Datar, M. P. Diwakar, M. G. Ghodgaonkar, A. K. Mohanty,
P. K. Mukhopadhyay, S. C. Ojha, L. M. Pant, K. Srinivas
e Calcutta University (CU), Kolkata:
Amitava Raychaudhuri
e Delhi University (DU), Delhi:
Brajesh Choudhary, Debajyoti Choudhury, Sukanta Dutta, Ashok Goyal,
Kirti Ranjan
e Harish Chandra Research Institute (HRI), Allahabad:

Anindya Datta, Raj Gandhi, Pomita Ghoshal, Srubabati Goswami,
Poonam Mehta, S. Rakshit

e University of Hawaii (UHW), Hawaii:
Sandip Pakvasa

e Himachal Pradesh University (HPU), Shimla:
S. D. Sharma

e Indian Institute of Technology, Bombay (IITB), Mumbai:
Basanta Nandi, S. Uma Sankar, Raghav Varma

e The Institute of Mathematical Sciences (IMSc), Chennai:

D. Indumathi, H. S. Mani, M. V. N. Murthy, G. Rajasekaran,
Abdul Salam

e Institute of Physics (IOP), Bhubaneswar:
D. P. Mahapatra, S. C. Phatak

E-mail: ino®tifr.res.in

e North Bengal University (NBU), Siliguri:
A. Bhadra, B. Ghosh, A. Mukherjee, S. K. Sarkar

e Panjab University (PU), Chandigarh:
Vipin Bhatnagar, M. M. Gupta, J. B. Singh

e Physical Research Laboratory (PRL), Ahmedabad:
A. S. Joshipura, Subhendra Mohanty, S. D. Rindani

e Saha Institute of Nuclear Physics (SINP), Kolkata:

Pratap Bhattacharya, Sudeb Bhattacharya, Suvendu Bose, Sukalyan
Chattopadhyay, Ambar Ghosal, Asimananda Goswami, Kamales Kar,
Debasish Majumdar, Palash B. Pal, Satyajit Saha, Abhijit Samanta,
Abhijit Sanyal, Sandip Sarkar, Swapan Sen, Manoj Sharan

e Sikkim Manipal Institute of Technology, Sikkim:
G. C. Mishra

e Tata Institute of Fundamental Research (TIFR), Mumbai:
B. S. Acharya, Sudeshna Banerjee, Sarika Bhide, Amol Dighe,
S. R. Dugad, P. Ghosh, K. S. Gothe, S. K. Gupta, S. D. Kalmani,
N. Krishnan, Naba K. Mondal, P. Nagaraj, B. K. Nagesh, Biswa-
jit Paul, Shobha K. Rao, A. K. Ray, L. V. Reddy, B. Satya-
narayana, S. Upadhya, Piyush Verma

e Variable Energy Cyclotron Centre (VECC), Kolkata:

R. K. Bhandari, Subhasish Chattopadhyay, Premomay Ghosh,
B. Mohanty, G. S. N. Murthy, Tapan Nayak, S. K. Pal, P. R. Sarma,
R. N. Singaraju, Y. P. Viyogi

URL: http://www.imsc.res.in/~ino
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20 Precision of parameters

Experiment P(|Am3,) P(sin*2623) hierarchy
MINOS 17% 65% —
CNGS 37% — —
NoVa 14% 70% —
T2K 6% 28% —
ICAL32 ~ 50% ~50% sin 2613 > 0.06

Sensitivity to parameters will increase with addition of PC
events.
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