
The novel aspects of a long baseline Beta Beam experiment with INO

Sanjib Kumar Agarwalla

Department of Physics, University of Calcutta

work done in collaboration with

Amitava Raychaudhuri and Abhijit Samanta

What is a BETA BEAM ?

What is a BETA BEAM ?

- It is a pure, intense, collimated beam of ν_e or $\bar{\nu}_e$, essentially background free.
- Produced through the beta decay of radioactive ions circulating in a storage ring.

What is novel about the BETA BEAM ?

What is novel about the BETA BEAM ?

- ⇒ well known energy spectrum, high intensity and virtually free of systematic errors
- ⇒ strong collimation, resulting from the large Lorentz boost of the parent ions

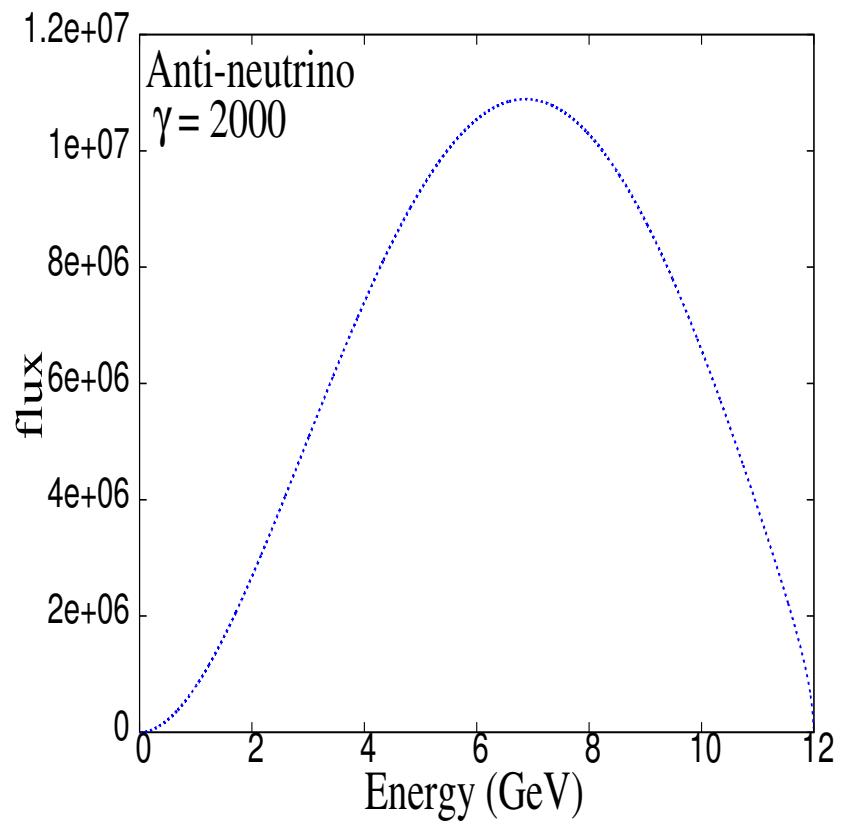
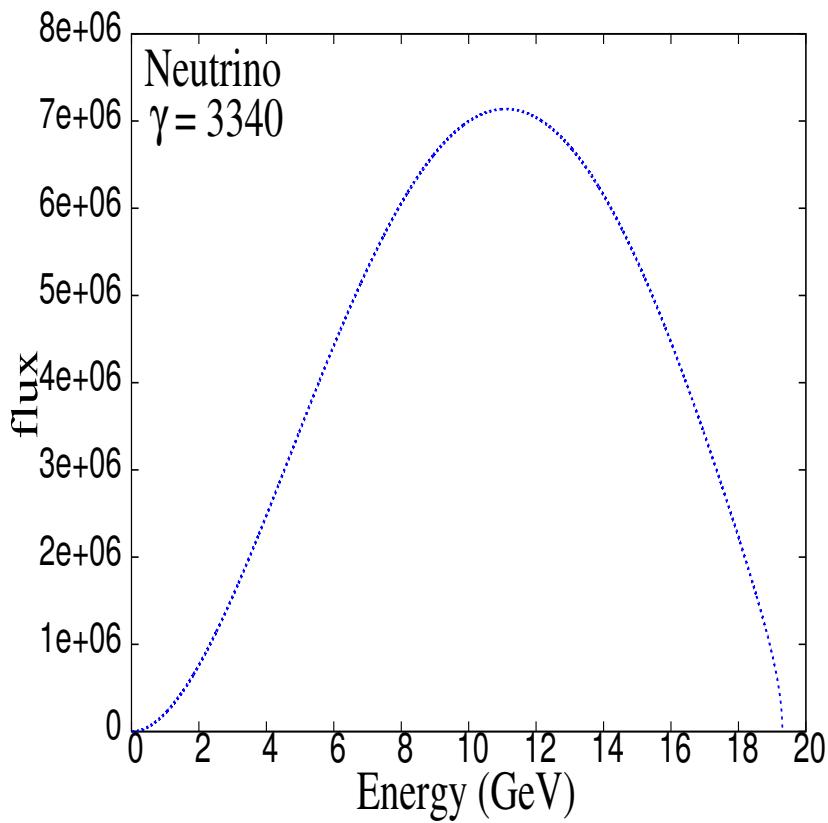
What is novel about the BETA BEAM ?

- ⇒ well known energy spectrum, high intensity and virtually free of systematic errors
- ⇒ strong collimation, resulting from the large Lorentz boost of the parent ions
- ⇒ the neutrino is isotropically emitted in rest frame since the parent ion is spinless
- ⇒ it can be produced with the help of the existing CERN facilities and a “high” γ option ($\gamma \geq 1500$) would be accessible in the LHC era

- The $\underline{\nu_e}$ ($\bar{\nu}_e$) beams are produced via the β decay of accelerated and completely ionized $\underline{^{18}Ne}$ (6He) ions.
- $\underline{^{10}Ne} \rightarrow \underline{^{18}F} + e^+ + \underline{\nu_e}$.
- $\underline{^2He} \rightarrow \underline{^3Li} + e^- + \underline{\bar{\nu}_e}$.

- The $\underline{\nu_e}$ ($\bar{\nu}_e$) beams are produced via the β decay of accelerated and completely ionized $\underline{^{18}Ne}$ (6He) ions.
- $\underline{^{10}Ne} \rightarrow \underline{^{18}F} + e^+ + \underline{\nu_e}$.
- $\underline{^2He} \rightarrow \underline{^3Li} + e^- + \underline{\bar{\nu}_e}$.
- Both beams can run simultaneously in the storage ring which requires: $\gamma(Ne^{18}) = 1.67 \cdot \gamma(He^6)$.
- The number of injected ions in case of anti-neutrinos can be $\underline{2.9 \times 10^{18}/year}$ and for neutrinos $\underline{1.1 \times 10^{18}/year}$.
- The $\underline{\nu_e/\bar{\nu}_e}$ flux is obtained from standard beta decay calculation.

The India-based Neutrino Observatory (INO)



- ⇒ a magnetized Iron calorimeter (**ICAL**) detector with good efficiency of charge identification ($\sim 95\%$) and excellent energy determination

The India-based Neutrino Observatory (INO)

- ⇒ a magnetized Iron calorimeter (**ICAL**) detector with good efficiency of charge identification ($\sim 95\%$) and excellent energy determination
- ⇒ two possible locations
 - (a) Singara (PUSHEP) in the Nilgiris ($L = 7177$ km)
 - (b) Rammam in the Darjeeling Himalayas ($L = 6937$ km)
- ⇒ a 32 Kiloton Iron detector
- ⇒ signal is the muon track ($\nu_e \rightarrow \nu_\mu$ channel)
- ⇒ energy threshold is around 800 MeV

Figure 1: Boosted spectrum of neutrinos and anti-neutrinos at the far detector assuming no oscillation. The flux is given in units of $\text{yr}^{-1}\text{m}^{-2}\text{MeV}^{-1}$.

Neutrino oscillation and present status

- ⇒ neutrino oscillations are governed by the two mass squared differences and three mixing angles
- ⇒ atmospheric neutrinos reveal the best-fit values with 3σ error : $|\Delta m_{23}^2| \simeq 2.12_{-0.81}^{+1.09} \times 10^{-3} \text{ eV}^2$, $\theta_{23} \simeq 45.0^\circ_{-9.33}^{+10.55}$
- ⇒ solar neutrinos tell us : $\Delta m_{12}^2 \simeq 7.9 \times 10^{-5} \text{ eV}^2$, $\theta_{12} \simeq 33.21^\circ$ (our convention : $\Delta m_{ij}^2 = m_j^2 - m_i^2$)

Neutrino oscillation and present status

- ⇒ neutrino oscillations are governed by the two **mass squared differences** and three **mixing angles**
- ⇒ atmospheric neutrinos reveal the best-fit values with 3σ error : $|\Delta m_{23}^2| \simeq 2.12_{-0.81}^{+1.09} \times 10^{-3} \text{ eV}^2$, $\theta_{23} \simeq 45.0^\circ_{-9.33}^{+10.55}$
- ⇒ solar neutrinos tell us : $\Delta m_{12}^2 \simeq 7.9 \times 10^{-5} \text{ eV}^2$, $\theta_{12} \simeq 33.21^\circ$ (our convention : $\Delta m_{ij}^2 = m_j^2 - m_i^2$)
- ⇒ current bound on CHOOZ mixing angle θ_{13} from the global oscillation analysis : $\sin^2 \theta_{13} < 0.05$ (3σ)
- ⇒ two large **mixing angles** and the relative oscillation frequencies open the possibility to test CP violation in the neutrino sector, if θ_{13} and δ are not vanishingly small

Unsolved issues →

- ⇒ at the moment, the sign of Δm_{23}^2 is not known. It determines whether the neutrino mass spectrum is direct or inverted hierarchical
- ⇒ we presently have only an upper limit on θ_{13} and the CP phase, δ is unconstrained

Unsolved issues →

- ⇒ at the moment, the sign of Δm_{23}^2 is not known. It determines whether the neutrino mass spectrum is direct or inverted hierarchical
- ⇒ we presently have only an upper limit on θ_{13} and the CP phase, δ is unconstrained

Our goal →

- ⇒ to address the question of neutrino mass hierarchy
- ⇒ to determine the mixing angle θ_{13} precisely

The appearance probability ($\nu_e \rightarrow \nu_\mu$) in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{12}^2 / \Delta m_{13}^2$ and $\sin 2\theta_{13}$,

$$\begin{aligned}
 P_{e\mu} &\simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1 - \hat{A})\Delta]}{(1 - \hat{A})^2} \\
 &\pm \alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1 - \hat{A})\Delta]}{(1 - \hat{A})} \\
 &+ \alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1 - \hat{A})\Delta]}{(1 - \hat{A})} \\
 &+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2};
 \end{aligned}$$

where $\Delta \equiv \Delta m_{13}^2 L / (4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}$,

and $\hat{A} \equiv \pm(2\sqrt{2}G_F n_e E) / \Delta m_{13}^2$.

If one chooses: $\sin(\hat{A}\Delta) = 0$

- The δ dependence disappears from $P(\nu_e \rightarrow \nu_\mu)$.
- A clean measurement of the hierarchy and θ_{13} is possible without any correlation with δ .

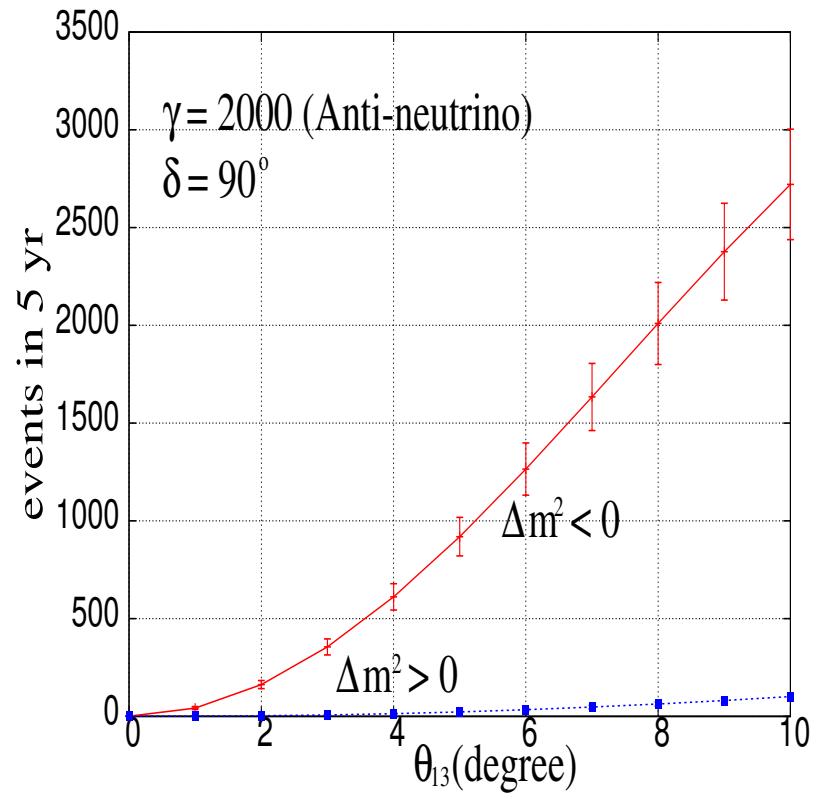
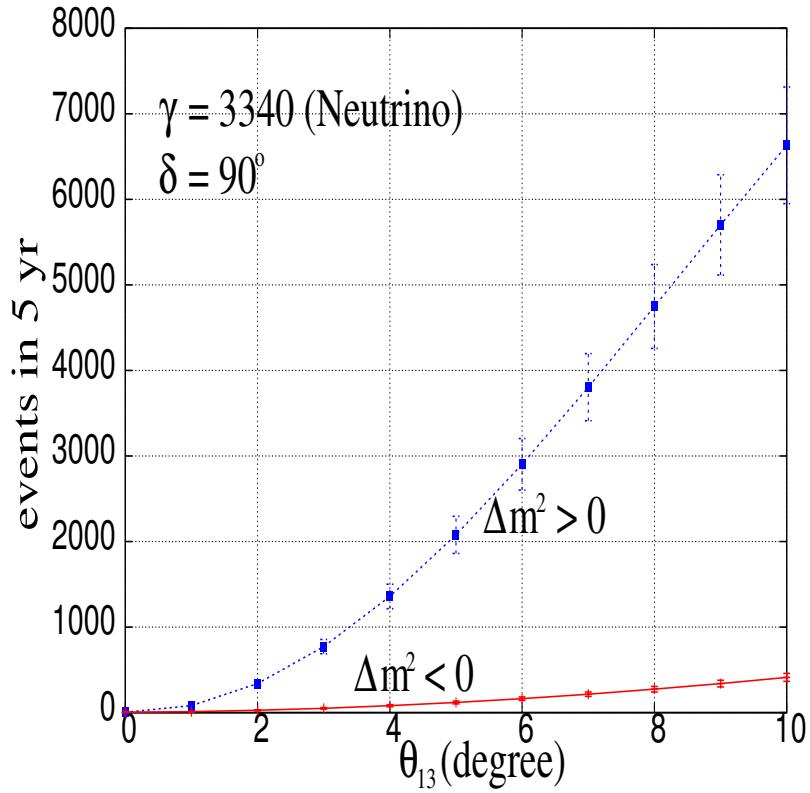
If one chooses: $\sin(\hat{A}\Delta) = 0$

- The δ dependence disappears from $P(\nu_e \rightarrow \nu_\mu)$.
- A clean measurement of the hierarchy and θ_{13} is possible without any correlation with δ .

The first non-trivial solution: $\sqrt{2}G_F n_e L = 2\pi$

- For an approximately isoscalar medium of constant density ρ : $L_{\text{magic}}[\text{km}] \approx 32726/\rho[\text{gm/cm}^3]$.
- The averaged density for the CERN-INO path turns out to be $\rho = 4.15 \text{ gm/cc}$ for which $L_{\text{magic}} = 7886 \text{ km}$.

Special features of CERN-INO baseline

- The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm_{23}^2 .

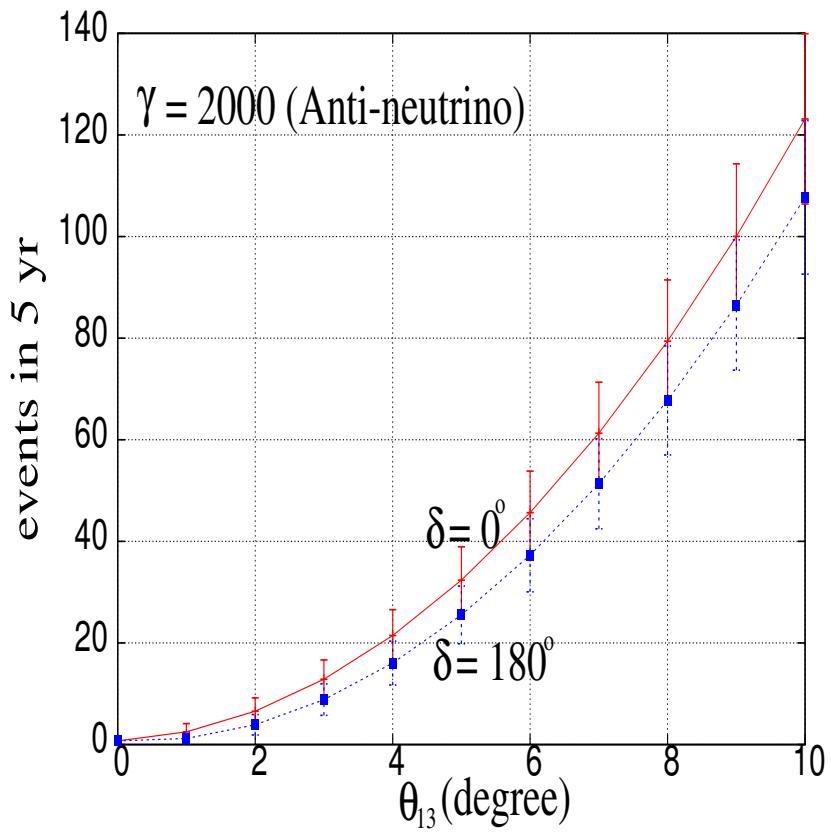
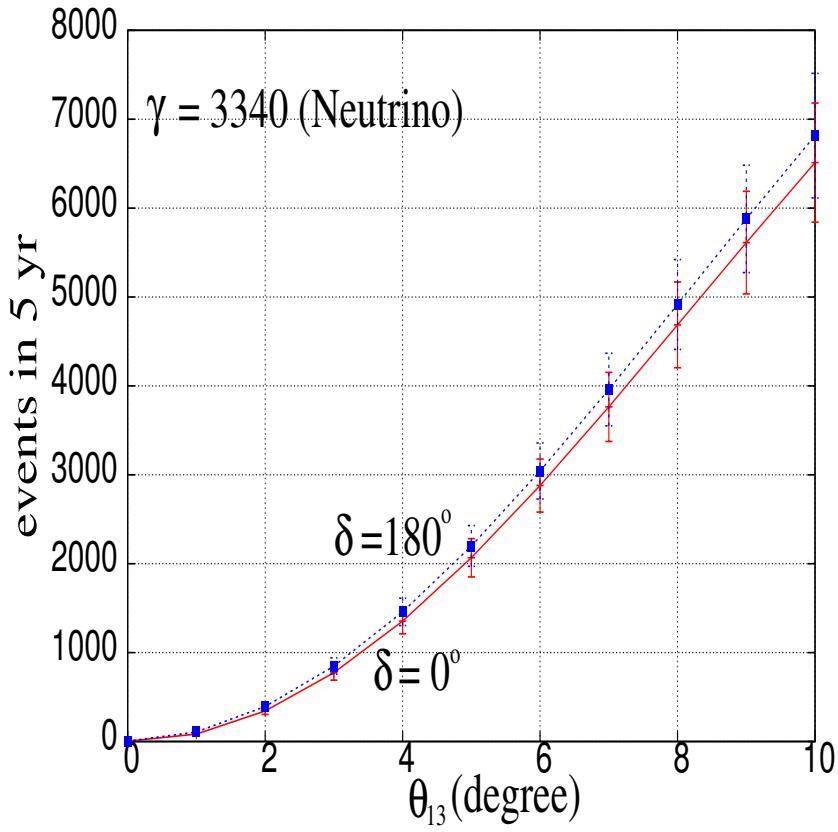
Special features of CERN-INO baseline

- The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm_{23}^2 .
- The CERN-INO baseline, close to the ‘magic’ value, ensures essentially no dependence of the final results on δ .
- This permits a clean measurement of θ_{13} avoiding the degeneracy issues which plague other baselines.
- Here all the plots are obtained by numerically solving the full 3-flavour neutrino propagation equation.

Figure 2: The number of events as a function of θ_{13} for neutrinos (antineutrinos) is shown in the left (right) panel for a 5-year run. The solid (broken) curves correspond to $\Delta m_{23}^2 < 0$ ($\Delta m_{23}^2 > 0$).

Determination of the sign(Δm_{23}^2) →

- ⇒ the mass hierarchy can be probed at the 4.4 (4.8) σ level with a neutrino (anti-neutrino) beam for values of θ_{13} as low as $\sim 1^\circ$, sensitivity increases with θ_{13}
- ⇒ for Δm_{23}^2 within the present 1σ interval $[1.85 - 2.48] \times 10^{-3} \text{ eV}^2$, this significance varies within 3.5 - 5.3 σ (4.6 - 5.1 σ) for neutrinos (anti-neutrinos)

Determination of the sign(Δm_{23}^2) →

- ⇒ the mass hierarchy can be probed at the 4.4 (4.8) σ level with a neutrino (anti-neutrino) beam for values of θ_{13} as low as $\sim 1^\circ$, sensitivity increases with θ_{13}
- ⇒ for Δm_{23}^2 within the present 1σ interval [1.85 - 2.48] $\times 10^{-3}$ eV², this significance varies within 3.5 - 5.3 σ (4.6 - 5.1 σ) for neutrinos (anti-neutrinos)
- ⇒ we have considered all type of events and deep-inelastic events dominate
- ⇒ 2% systematic error, 10% fluctuation in the cross section
- ⇒ the statistical error has been added to the above in quadrature and nuclear effects are neglected

Figure 3: Variation of the number of events with θ_{13} for ν (left) and $\bar{\nu}$ (right) for a 5-year run. Here, Δm_{23}^2 is chosen positive.

Precision measurement of θ_{13} →

- ⇒ θ_{13} can be probed down to 1°
- ⇒ the estimated 3σ errors on θ_{13} measured to be $1^\circ(5^\circ)$
are $\underline{-0.5^\circ}^{+0.6^\circ}$ ($\underline{-1.4^\circ}^{+2.2^\circ}$) with $\delta = 0^\circ$ and $\Delta m_{23}^2 > 0$ for neutrinos

Precision measurement of θ_{13} →

- ⇒ θ_{13} can be probed down to 1°
- ⇒ the estimated 3σ errors on θ_{13} measured to be $1^\circ(5^\circ)$ are $\underline{-0.5^\circ}^{+0.6^\circ}$ ($\underline{-1.4^\circ}^{+2.2^\circ}$) with $\delta = 0^\circ$ and $\Delta m_{23}^2 > 0$ for neutrinos
- ⇒ the 1σ error of Δm_{23}^2 translates to uncertainties of $\sim \pm 1^\circ$ at $\theta_{13} = 5^\circ$ and less than $\pm \frac{1}{4}^\circ$ at $\theta_{13} = 1^\circ$ for a neutrino beam with $\delta = 90^\circ$ and $\Delta m_{23}^2 > 0$
- ⇒ here we present the results using the CERN to Rammam ($L = 6937$ km) baseline and the results vary by less than 5% if the baseline for the alternate PUSHEP site ($L = 7177$ km) is used

Conclusions

Conclusions

- We have discussed the prospects of obtaining information on the mixing angle θ_{13} and the sign of Δm_{23}^2 using the proposed ICAL detector at INO with a high γ beta beam source.
- It appears that such a combination of a high intensity $\nu_e, \bar{\nu}_e$ source and a magnetized iron detector is well-suited for this purpose.