

Velocity Measurement of Cosmic Muons using the India-based Neutrino Observatory prototype detector

G.Majumder ^a, S.Mohammed ^b, N.K.Mondal ^a, S.Pal ^{a,*}, D.Samuel ^a, B.Satyanarayana ^a,

^a*Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005, India.*

^b*Department of Physics, Aligarh Muslim University, Aligarh, 202002, India.*

Abstract

The India-based Neutrino Observatory (INO) collaboration is planning to set up a magnetised 50 kton Iron-Calorimeter with Resistive Plate Chambers (RPC) as active detectors to study neutrino oscillations. A prototype detector stack (without magnet) comprising of 12 layers of RPCs of 1m x 1m in area has been set-up to track cosmic ray muons. To study its capability and the feasibility of distinguishing between up-going and down-going particles, the velocity of cosmic muons recorded in this stack has been measured. The measurement procedure, calibration and results are described here.

Key words: INO, cosmic muons, velocity

1. Introduction

2 A detailed description of the INO project can be found
3 in other articles in this proceeding [1][2]. The prototype de-
4 tector stack (without the magnet) for this project has been
5 developed at the Tata Institute of Fundamental Research
6 (TIFR). The detector consists of 12 layers of 1m x 1m RPCs
7 with 32 strips on either readout electrodes labeled as X and
8 Y, with the strips in the X plane orthogonal to the strips in
9 the Y plane. The width of the strips is 2.8cm and the gap
10 between adjacent strips is 0.2cm. The layers are stacked on
11 top of each other, separated by a distance of 16cm which
12 amounts to a total stack height of 1.76m. Fig.1 shows the
13 schematic diagram of the prototype stack. The RPCs are
14 operated in the avalanche mode and the efficiency of the
15 layers are about 95% at an operating voltage of 9.9kV. The
16 time resolution of the chambers is ~ 1.5 ns. An overview of
17 the detector set-up can be found in [3][4]. A short descrip-
18 tion of the detector signal processing units and the DAQ
19 can be found in [5] in this proceeding.

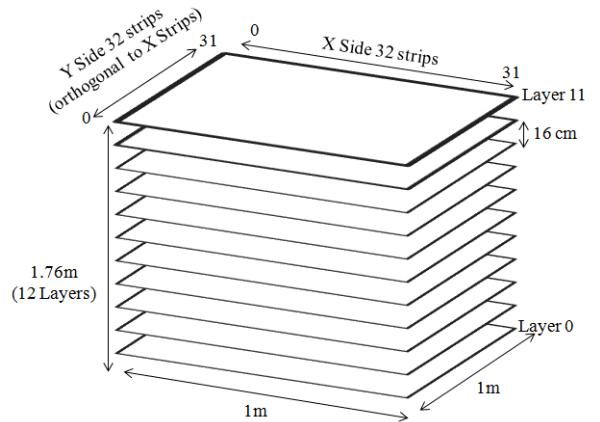


Fig. 1. Schematic diagram of the prototype stack with 12 RPCs.

2. Measurement Procedure

21 The measurement of the velocity of the particles involves
22 the estimation of the path length traversed by them in the
23 detector and the time taken for the same. The estimation
24 of these parameters is explained in the following sections.

25 2.1. Data received from the DAQ

26 The following informations are recorded by the DAQ sys-
27 tem:

^{*}
1 Email address: sumanta@tifr.res.in (S.Pal).

- Strip hit information, i.e., the strip-wise hit patterns in the X and Y planes in the layers through which the particle, satisfying the trigger condition (8/12 layer coincidence) has passed through.
- Timing information, measured by a multi-hit TDC (V1190B,CAEN) with 100ps LSB.
- Noise rate of the strips, monitored at regular intervals.

2.2. Estimation of the path length

From strip hit information, the slope and the intercept are estimated by fitting a straight line to the respective hit pattern (cf. Fig. 2.2).

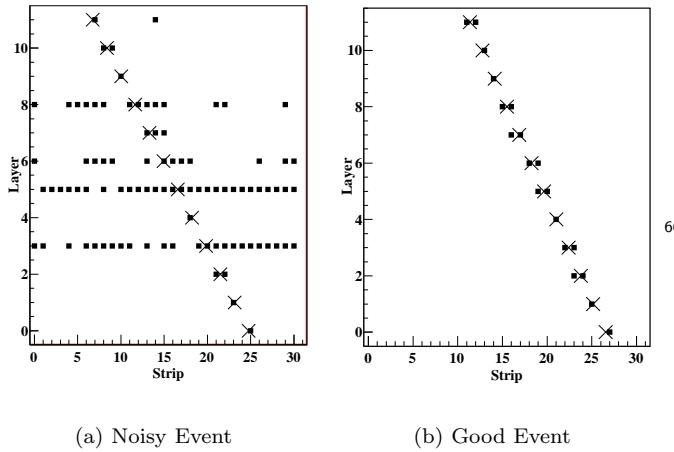


Fig. 2. 2(a) shows a typical noisy event and 2(b) shows a proper event. The solid squares are the hits and the crosses are points from the straight line fit made using the algorithm discussed here.

Although the average cluster size is around 1.6 strips, there are however outliers present in the hit pattern arising mainly due to correlated electronic noise. Therefore, data reduction becomes necessary before fitting. X-side and Y-side data are fit separately. The procedure for data reduction and fitting is described below:

- (i) First, layers with no hits or with multiplicity greater than 2 are rejected (as in Layers 3,5,6,7, and 8 in Fig.2(a)).
- (ii) If the multiplicity is 2, the layer is rejected if the hits are away by 2 strips (as in Layer 11 in Fig.2(a)). Otherwise, the average of the two hits is taken to be the hit position (as in Layers 10 and 2 in Fig.2(a)).
- (iii) The event is rejected, if the number of layers is less than 4.
- (iv) If the event is accepted, a linear fit is made to the hits.
- (v) If the residual ($|Fit-Hit|$) is greater than 2 strips, the layer is rejected.
- (vi) The event is rejected if the number of layers is now less than 4. If accepted, another linear fit is made and the results are saved.

The above procedure results in rejection of approximately 5% of the events. The overall layer rejection is 8%.

The error for the hit position is taken as $\sim 0.8\text{cm}$ assuming an uniform distribution of the hits along the strip width. This is also getting reflected in the residual distribution. The reduced χ^2 distribution and the residual distribution is shown in Fig.3.

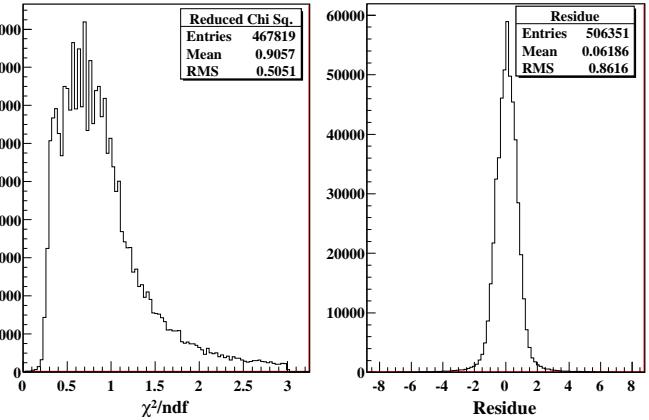


Fig. 3. Reduced χ^2 distribution and the residual distribution for the linear fit to X plane hits.

The total path length l between the plane of the top layer and the plane of the bottom layer is given by:

$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \quad (1)$$

where (x_1, y_1, z_1) are the coordinates in the plane of the bottom layer and (x_2, y_2, z_2) are the coordinates in the plane of the top layer which are estimated from the linear fit. The zenith angle θ of a track is given by:

$$\theta = \cos^{-1}\left(\frac{h}{l}\right) \quad (2)$$

where h is the stack height.

2.3. Timing Measurement

Before using the timing data for velocity estimation, a calibration is made so as to correct the differences in propagation delay from strip to strip due to the fact that each strip signal takes its own path to the TDC.

2.4. Time Offset Calibration

Since the RPCs operate in the avalanche mode, the signals are amplified by pre-amplifiers with a gain factor of 80. These signals are further processed by Analog Front-Ends (AFE) and Digital Front-Ends (DFE) and finally reach the TDC and other measuring devices in the DAQ. In each plane (X and Y side separately), strips 0-3, 8-11, 16-19 and 24-27 are read by one AFE and strips 4-7, 12-15, 20-23 and 28-31 are read by another AFE. We have assumed that the effective contribution to the time delays come mainly from the electronics succeeding the pre-amplifier stage viz., the AFEs and the DFEs. The schematic for the time offset calibration is shown in Fig.4. For this calibration, the bottom

layer (0^{th} Layer) is set as the reference. To calibrate the n^{th} layer, one of the fan-out signal F_n from the pulse generator is connected to its respective AFE (AFE_n). Fan-out F_0 is connected to the AFE of the reference layer and F_t is connected to the trigger input of the TDC. If ΔC is the pulse propagation time from the pulse generator fan-out to AFE and Δt is the pulse propagation time from AFE to the respective TDC channel, then the pulse propagation time difference between the reference layer and the calibrated layer is given by

$$\Delta t = (\Delta C_0 - \Delta C_n) + (\Delta t_0 - \Delta t_n) \quad (3)$$

To minimize systematic errors, the fan-out channels are swapped at the AFE input and the measurement is repeated. The time difference is now given by

$$\Delta t_{swap} = (\Delta C_n - \Delta C_0) + (\Delta t_0 - \Delta t_n) \quad (4)$$

The corrected time offset is thus given by

$$\Delta t_{offset} = (\Delta t + \Delta t_{swap})/2 \quad (5)$$

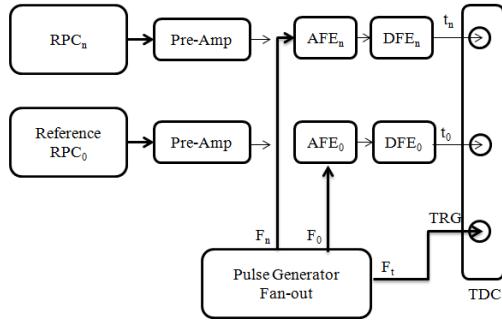


Fig. 4. Schematic of time calibration circuit

74
75 The relative time differences for every strip in the dif-
76 ferent layers were measured and these data were used to
77 correct the timing data. The time offsets with their cor-
78 responding error bars for the X and Y planes is shown in
79 Fig.5. The shown plot is the time offsets between the 31st
80 strip of the reference layer and the 31st strip of the corre-
81 sponding layer. The strip-wise time offsets for 0th layer and
82 8th layer is shown in Fig. 6.

83 3. Results

84 The data presented on this analysis is taken from a run 99 lasting of 24 hours ($\sim 5,00,000$ events). After correct-100 ing for the timing offsets, the data (l_i, t_i) is fit to a straight line101 of the form:

$$t_i - t_0 = \frac{l_i}{v} \quad (6)$$

85 where l_i is the track length from 0th layer (bottom layer)₁₀₅ to i^{th} layer. t_0 and t_i are the TDC times for 0th layer and₁₀₆ i^{th} layer respectively, after applying the corrections. v is₁₀₇ the velocity of the particle. Both X and Y timing data are₁₀₈ used in the fit. The following procedure was followed for₁₀₉ the time-length fit.

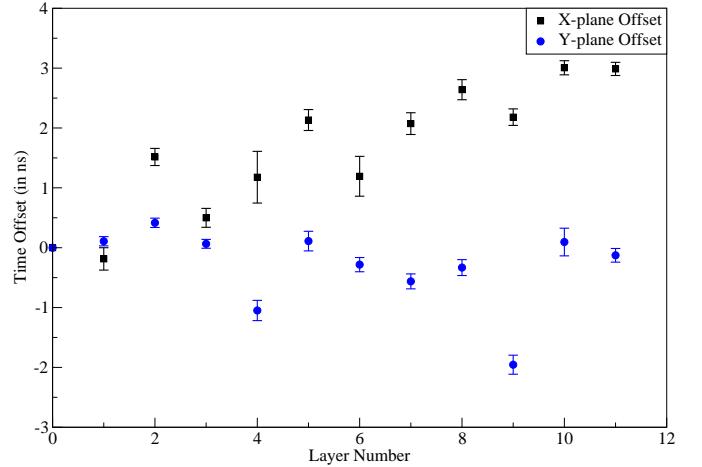
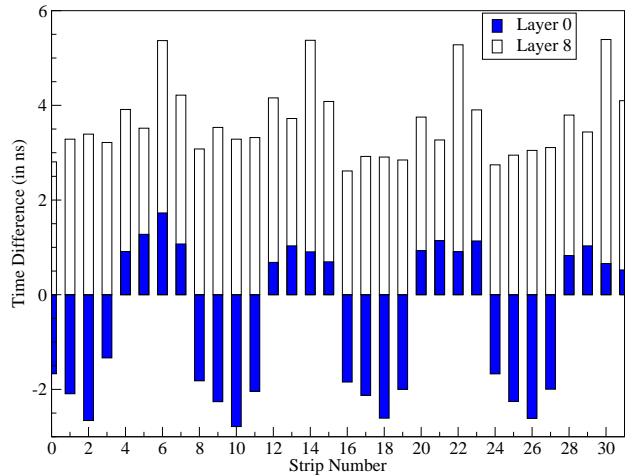
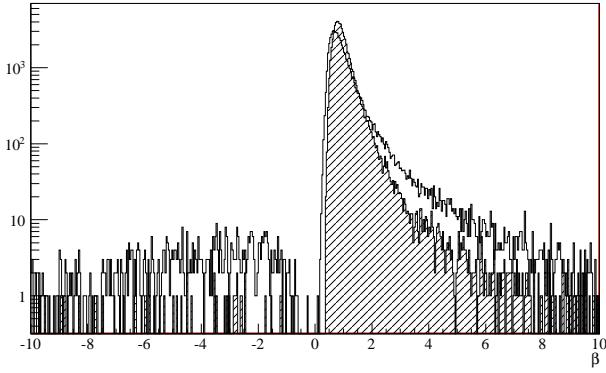


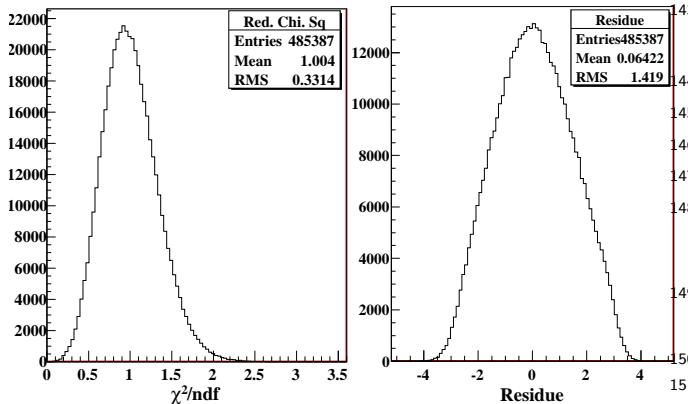
Fig. 5. Layer-wise time offsets for the X and Y planes.




Fig. 6. Strip-wise time offsets for 0th layer and 8th layer. A correlation is seen among strips $i, i + 8, i + 16$ and $i + 24$ due to the fact that they are wired-OR in the AFEs.

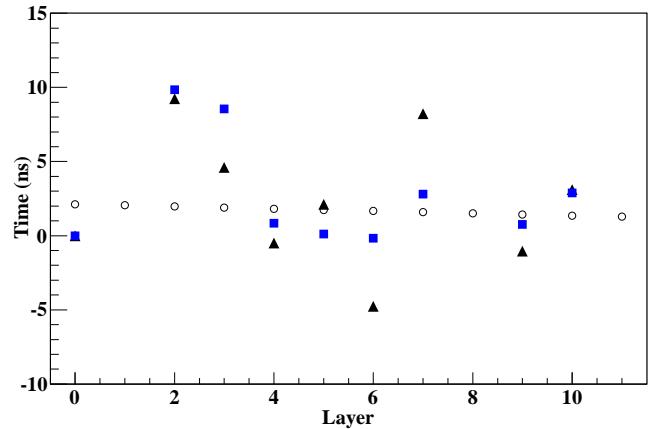
- 90 – Only tracks that traverse the entire stack are considered.
91 This condition is imposed by an appropriate cut on the
92 zenith angle (0° - 38°).
- 93 – An event is also rejected if the reference layer (0th layer)
94 timing is not recorded.
- 95 – A first linear fit is made if the number of layers is at least
96 4.
- 97 – Points that are more than 2ns away from the straight
98 line are removed.
- 99 – The event is rejected if the number of layers is less than
100 4. Otherwise, a final fitting is made and the results are
101 saved.

102 The above procedure results in a further rejection of ap-
103 proximately 3-5% of the events. The overall layer rejec-
104 tion is $\sim 8\%$. The velocity distribution is plotted in Fig.7.
105 The reduced χ^2 distribution together with the time resid-
106 ual ($|\text{Fit-Hit}|$) distribution is plotted in Fig.8. The velocity
107 distribution plot in logarithmic scale reveals the presence
108 of a small number of events with negative velocity (0.3% of
109 the total entries). A visual screening of those events in the
110 negative side showed that these events arise from uncorre-


111 lated points (cf. Fig. 9). Such entries could not be rejected
 112 on a generic criterion like a χ^2 cut and there is no clue so
 113 far to the origin of such points. The initial timing values
 114 (offset corrected) and the final fit are shown in Fig. 9. Layer
 115 1 is rejected as no timing is recorded. The 0th layer and the
 116 2nd layer are rejected after the first fit (residue is >2ns).
 117 X-timing of 3rd layer and Y-timing of layers 4,6 and 7 are
 118 also rejected under the same criteria.

119 To see the effect of the number of contributing planes
 120 to the β distribution, the distribution of β for low number
 121 of contributing planes (4-6 layers) and for high number of
 122 contributing planes (10-12 layers) were made (Refer. Fig.
 123 7). As seen from the plot, the number of outliers slightly
 124 increase for low number of contributing planes.

140 Fig. 7. The β distribution for low number of contributing planes and
 141 high number of contributing planes (shaded plot).


124

153 Fig. 8. The reduced χ^2 distribution and the time residual distribution
 154 for the linear fit to the timing data.

125 4. Conclusion

126 So far the prototype RPC stack has been used to study
 127 the detector related parameters. This work is the first step
 128 towards a particle physics oriented analysis. The aim of this
 129 work is to study the feasibility of using this detector to dis-
 130 tinguish between up-going and down-going particles. Since

142 Fig. 9. Timing data of a typical event which results in a negative
 143 velocity. The solid squares and the solid triangles represent the X
 144 and Y timing respectively. The hollow circle is the second and final
 145 straight line fit to these points.

146 upward-going cosmic muons are stopped by the earth, they
 147 can not be observed in the detector. The other source of
 148 upward-going muons is from neutrino induced interactions.
 149 However, this flux is very small ($\sim (1-4) \times 10^{-15} \text{ cm}^{-2} \text{s}^{-1}$)
 150 [6] to be observed in this small detector and in this short
 151 period of observation. With the results discussed here, it
 152 seems possible to determine the directionality of particles
 153 provided the negative part of the β distribution is cleaned
 154 up by a well defined rejection criterion. This study has
 155 opened up other issues related to timing calibration and
 156 analysis that need to be addressed and which might be
 157 helpful for the final set-up.

158 Acknowledgments

159 The INO project is funded by the Department of Atomic
 160 Energy(DAE) and the Department of Science and Tech-
 161 nology (DST), Government of India. Crucial contributions
 162 from many INO collaborators to this paper are gratefully
 163 acknowledged.

164 References

- [1] B.Satyanarayana, et al. Development of 2m x 2m size Glass RPCs for INO, in these proceedings 2010.
- [2] N.K.Mondal, et al. Cosmic Ray test of INO RPC stack, in these proceedings 2010.
- [3] N.K.Mondal, et al. Development of glass Resistive Plate Chambers for the INO experiment, Nucl. Inst. and Meth. 602A (2009) 744.
- [4] B.Satyanarayana, et al. INO prototype detector and data acquisition system, Nucl. Inst. and Meth. 602A (2009) 784.
- [5] D.Samuel, et al. VME-based Data Acquisition System for the India-based Neutrino Observatory prototype detector, in these proceedings 2010.
- [6] K.Abe, et al. High Energy Neutrino Astronomy using upward-going muons in Super-KamiokandeI, The Astro.Phys.Journal, Vol. 652 (1).