

Project Report

on

Developing an interface to download the FPGA configuration
file to a EEPROM device via VME bus to reconfigure FPGA at

power up.

Submitted by
Abhishek Surana

(Indian Institute of Technology, Delhi)

Under the supervision of

B.Satyanarayana and Mandar Saraf

Guided by
Prof. N.K. Mondal

Submitted on

29th December 2009

Acknowledgment

I sincerely thank Prof. N.K. Mondal and B.satyanarayana.for providing me the lab
facilities in INO lab for completing my project work. My special thanks to Mr
Mandar Saraf for always being so patient with me and allowing me explore and do
things as i wanted to. I would like to acknowledge all the lab members, especially
Mr.R.R Shinde, Mr.Manas ,Mr.Shekhar, Ms. Darshna,Ms.Sonali for their help
through out my project work.I would like to thank Mr. Deepak Samuel, Mr.
Saleem, Mr. Sumanto Pal and Ms. Sudeshna for their constant support . A
heartily thanks again for Mr. R Shinde and Mr. Manas for allowing me to
participate in RPC building process. I would also like to thank Mr. Piyush Verma
for making me part of Babha centenary celebrations which was really a learning
experience for me.

This is essentially a report of a learning experience and I thank all those (many of
those who are not listed here) who made my visit so enjoyable. It goes without
saying that all mistakes in this report are mine alone. In the next few sections, I
will set out details of the things I learned, including, the details and status of the
project that i worked on.

Abhishek Surana
IIT Delhi

Introduction

The modules being developed for the Data Acquisition system for INO VME module utilizing large FPGA’s to
implement tasks such as data transfer and signal processing. The desire was to be able to download the FPGA
configuration information via the VME crate processor and VME bus to the serial EEPROM devices that program
the FPGA at power up. The main issue here was in system programming (ISP) of EEPROM devices such that they
don’t need to be manually programmed every time a new configuration file has to be uploaded. The other issue
was universality of configuration scheme such that it can be used with any type of FPGA(Flex10k to cyclone III).
Also we wanted to avoid JTAG interface .

By the end of the my stay i was able to design a interface which completed all our requirements but due to time
constraints couldn’t implement it.

Table: Configuration scheme for different FPGAs.

Enhanced Configuration Devices
We started off with Flex10k FPGAs as they were available already in the lab and were less expensive. .I zeroed on
Passive Serials configuration scheme as it was universal with all FPGAs beside JTAG. In passive serial itself there
were different ways to do the configuration . One was to use Enhanced Configuration devices (EPCs or EPCSs) by
Altera itself. Another was to use microprocessors with a external flash memory which will configure the FPGA at the
time of power up .

For the first few weeks it was thought that EPC1 or EPC1441 could be used with flex10k to see if this system work
and later on other enhanced devices with higher memory could be tested with other FPGAs.

Fig: Enhanced configuration device (EPC 1, EPC1441 to configure FPGAs)

Fig: Enhanced configuration device (EPC 1, EPC1441 to configure FPGAs)

But in between i missed on that these devices were not reprogrammable. Even EPC2 could be reprogrammed only
after taking out from circuit manually and programmed again by a programmer. Also, There is some confusion
regarding whether these enhanced configuration devices could be used with Cyclone series FPGAs at all as there
are some contradictory statements in different documents.

So finally after much discussion it was decided that we would work on use microprocessor and Flash memory to
configure FPGA as it was universal. Also it was low on cost side. The idea to use Flex10k was also done away with
and now we were working on with Cyclone series devices as it was to be used in final scheme of things.

Final Design

A CPLD Xilinx 9572 would be used to put the incoming bit stream from VME (presently from parallel port from PC)
to to data flash. This bit stream would consist of configuration file for Altera Cyclone FPGA. A microcontroller would
be used to control the transfer of configuration file from dataflash to FPGA.

Dataflash- Atmel AT45DB081D

The data flash we are going to use is Atmel AT45DB081D. Its 8 megabit 2.5 volt with Serial Peripheral Interface
compatible modes. Its 8,650,752 bits of memory are organized as 4,096 pages of 256 bytes or264 bytes each. In
addition to the main memory, the AT45DB081D also contains two SRAM buffers of 256/264 bytes each. The
buffers allow the receiving of data while a page in the main Memory is being reprogrammed, as well as writing a
continuous data stream. EEPROM emulation (bit or byte alterability) is easily handled with a selfcontained three
step read-modify-write operation. Unlike conventional Flash memories that are accessed randomly with multiple
address lines and a parallel interface, the DataFlash uses a RapidS serial interface to sequentially access its data.

To allow for simple in-system reprogrammability, the AT45DB081D does not require high input voltages for
programming. The device operates from a single power supply, 2.5V to 3.6V or 2.7V to 3.6V, for both the program
and read operations. The AT45DB081D is enabled through the chip select pin (CS) and accessed via a three-wire
interface consisting of the Serial Input (SI), Serial Output (SO), and the Serial Clock (SCK).All programming and
erase cycles are self-timed.

Fig: Pin out of Atmel AT45DB081D Dataflash

Fig: Memory Structure of dataflash

Fig: Write operation in dataflash

Fig: Read Operation from dataflash

ATtiny 13

Fig: Pin out for ATtiny13

The ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the ATtiny13 achieves throughputs approaching 1 MIPS per
MHz allowing the system designer to optimize power consumption versus processing speed. The AVR core
combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single
instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers. The ATtiny13 provides the following
features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O
lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External
Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software
selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC,
Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register
contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode
stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

Xilinx CPLD XC9572

The XC9572 is a high-performance CPLD providing advanced in-system programming and test capabilities for
general purpose logic integration. It is comprised of four 36V18 Function Blocks, providing 1,600 usable gates with
propagation delays of 7.5 ns.

Current Status

Presently i was trying to write into dataflash through a parallel port. The C code that i have written would hopefully
do that. Initially there were some problems using C for parallel port interfacing in windows vista but later with the
use of drivers(inpout32.dll) it was solved. Also I have written the VHDL code for CPLD that would transfer the
parallel data to dataflash serially.

The C code and VHDL code are attached in appendix.

RPC Building

During my stay here i also got a chance to be part of RPC making process. I helped in making RPCs of size 2 × 2
m2 . All glass used in this round was 2 mm glass. The glass was thoroughly cleaned with alcohol (propan-2-ol) on
both sides. It was then washed with distilled water The water is thoroughly wiped off at once and the glass is once
again cleaned with alcohol. Gloves and large amounts of tissue paper are a must. The glue used was a 3M Scotch-
weld epoxy adhesive in a duo-pak cartridge and was applied using the branded 3M EPX applicator.

The edge spacers are designed in sections: a straight piece, and an angle or corner piece. This is because the
edges of the glass are cut with a jig so that there is room for the input and output gas tubes. The corner piece has
two wedges on either side that slot neatly into holes in the straight sections. It also contains the gas inlet/outlet
pipes into which the gas tube fits.

Future work

I have written C Code for parallel port interface which have to be run and checked. Also the VHDL code that i have
written for the CPLD have to be implemented. We were not able to get the microcontroller so once we get that work
has to be done to use that microcontroller to transfer data from Atmel Datflash to Altera FPGA. The code also
needs to be looked into if it satisfies all our requirements, This interface is in very nascent stage and many things
need to be refined such as the amount of time taken to write in dataflash, time taken to configure FPGA etc.

Appendix
/*Program to program dataflash at45d81d using a xilinx 9572 cpld through a
parallel port in Win xp environment*/
// "pport.c" abhishek surana , IIT Delhi

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<windows.h>

#define BASE 0x378 //Base address is for data port
#define ECR BASE 0x402

// byte port address have to be defined??

#define D7 0x80
#define D6 0x40
#define D5 0x20
#define D4 0x10
#define D3 0x08
#define D2 0x04
#define D1 0x02
#define D0 0x01

#define S7 0x80 /* base address= base+1 */
#define S6 0x40
#define S5 0x20
#define S4 0x10
#define S3 0x08

#define C3 0x08 /* base address= base+2 */
#define C2 0x04
#define C1 0x02 /* note: NOT(C1) is on the wire */
#define C0 0x01

// C3 FOR CHIP SELECT CS
// C2 FOR READ/WRITE STROBE
// c2 high- write, low- read

typedef short (_stdcall *inpfuncPtr)(short portaddr);
typedef void (_stdcall *oupfuncPtr)(short portaddr, short datum);

void test_read8(void);
void test_write(void);
void test_write_datum(short datum);

 /* After successful initialization, these 2 variables will contain function
pointers. */
 inpfuncPtr inp32fp;
 oupfuncPtr oup32fp;
 /* Wrapper functions for the function pointers - call these functions to
perform I/O. */
 short Inp32 (short portaddr)
 {
 return (inp32fp)(portaddr);
 }

 void Out32 (short portaddr, short datum)
 {

 (oup32fp)(portaddr,datum);
 }

 int main(void)
 {

 char filename [300] // for getting filename
 FILE *Filepointer;
 unsigned char *r;
 int statusbits;
 int busystatus;

 HINSTANCE hLib;
 short x;
 int i;

 /* Load the library */
 hLib = LoadLibrary("inpout32.dll");
 if (hLib == NULL)
 {
 fprintf(stderr,"LoadLibrary Failed.\n");
 return -1;
 }

 /* get the address of the function */
 inp32fp = (inpfuncPtr) GetProcAddress(hLib, "Inp32");
 if (inp32fp == NULL)
 { fprintf(stderr,"GetProcAddress for Inp32 Failed.\n");
 return -1;
 }
 oup32fp = (oupfuncPtr) GetProcAddress(hLib, "Out32");
 if (oup32fp == NULL)
 {
 fprintf(stderr,"GetProcAddress for Oup32 Failed.\n");
 return -1;
 }

 ///main program frm here...

 Out32(ECR, 0x01); /*Intialisation to SPP Byte Mode*/
 Out32(BASE+2, 0x24);// Enable Bi directional port and reset =H
 Out32(BASE+2, 0x20);// Enable Bi directional port and reset =l
 Out32(BASE+2, 0x24);// Enable Bi directional port and reset =H

printf("Reading d file");
scanf("%s" , filename);

Out32(BASE+2,0x00);// check for inverted logic
Out32(BASE+2,0x04);// pulling c2 high for write
Out32(BASE,0x84);//op code for writing in buffer 1
Out32(BASE, 0x00);//dcb
Out32(BASE, 0x00);//dcb
Out32(BASE, 0x01);//address reg

Filepointer=fopen(filename,"rb");
if (Filepointer==NULL)
{
printf("Can not open d file\n\n");
return 1;
}

 fseek(Filepointer,0,SEEK_SET);

 for (i=k;i<k+256; i++)

 {

 fread(&r,1*i,1,Filepointer);
 fseek(Filepointer,1,SEEK_CUR);

Out32(BASE, &r);

}
fclose(Filepointer);
Out32(BASE+2, 0x08);
Out32(BASE+2,0x00);
Out32(BASE,0xD7);
Out32((BASE+2),0x08);

do
{
statusbits = Inp32(BASE+1);
busystatus=(Ox80 & statusbits);
if (busystatus== 0x80)
{
//give timedelay
}
Out32(BASE+2,0x00);
Out32(BASE, 0x83);// op code for writing in main memory frm buffer 1
//insert loop for address bits...
Out32(BASE, 0x00);//4dc bits+ 12 add bitd+8 dc bits
Out32(BASE, 0x01);
Out32(BASE, 0x00);//dc bits
Out32((BASE+2), 0x08);//cs high

// writing into buffer 2
Out32(BASE+2,0x00);// check for inverted logic
Out32(BASE+2,0x04);// pulling c2 high for write
Out32(BASE,0x87);//op code for writing in buffer 1
Out32(BASE, 0x00);//dcb
Out32(BASE, 0x00);//dcb
Out32(BASE, 0x01);//address reg

Filepointer=fopen(filename,"rb");
if (Filepointer==NULL)
{
printf("Can not open d file\n\n");
return 1;
}

fseek(Filepointer,0,SEEK_SET);

 for (i=j;i<;j+256 i++)

 {

 fread(&r,1*i,1,Filepointer);
 fseek(Filepointer,1,SEEK_CUR);
 Out32(BASE, &r);

}
fclose(Filepointer);
Out32(BASE+2, 0x08);
Out32(BASE+2,0x00);
Out32(BASE,0xD7);

Out32((BASE+2),0x08);

do
{
statusbits = Inp32(BASE+1);
busystatus=(Ox80 & statusbits);
if (busystatus== 0x80)
{
//give timedelay
}
Out32(BASE+2,0x00);
Out32(BASE, 0x83);// op code for writing in main memory frm buffer 1
//insert loop for address bits...
Out32(BASE, 0x00);//4dc bits+ 12 add bitd+8 dc bits
Out32(BASE, 0x01);
Out32(BASE, 0x00);//dc bits

Out32((BASE+2), 0x08);//cs high

}
}

VHDL Code for Xilinx 9572 CPLD for transferring data from Parallel port to Atmel
Dataflash
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
--
entity cpld_flash_interface is
generic (addr_length: integer:= 24; byte: integer:= 8);
port(
 -- parallel port data, reset and status pins
 ppd: inout std_logic_vector(byte-1 downto 0); -- data byte from
parallel port
 ppr: in std_logic; -- reset o/p from parallel port
 ppc: in std_logic; -- chip select instruction from parallel port
 pprw: in std_logic; -- read/write insruction from parallel
port(low for read, high for write)

 --external clock pin for cpld
 cclk: in std_logic;

 -- flash data, address and control pins
 fin: out std_logic; -- serial i/p from cpld to flash
 fout: in std_logic; -- serial o/p from flash to cpld
 fclk: out std_logic; -- clk to flash from cpld
 frst: buffer std_logic; -- reset to flash from cpld
 fcs: out std_logic -- chip select to flash from
cpld

);
end cpld_flash_interface;

architecture design of cpld_flash_interface is
constant HI: std_logic:= '1';
constant LO: std_logic:= '0';

begin

fcs<= ppc ; --parallel port send instruction for chip select
frst <= ppr; --remove flash reset for writing
fclk <=cclk; --external clock input from vlsi kit (3.57
MHz)

process(cclk)

if(pprw =LO)then -- pprw is low meaning writing operation should be done.

variable inp: std_logic_vector(byte-1 downto 0);

-- if (pprw=LO) then --(pprw is for read and write)
 inp:= ppd;
 if(cclk'event and cclk='1') then --
 fin<= inp(byte-1);
 inp(byte-1 downto 1):= inp(byte-2 downto 0);
 -- shift register
 end if;
-- end if;
--end process;
else

variable shift_data: std_logic_vector(7 downto 0); --
reading operation in case pprw is high

 for i in 0 to 7 loop
 if(cclk'event and cclk='1') then
 shift_data(i):= fout;
 --shift_data(2 downto 0):= shift_data(3 downto 1);
-- shift_data(0):= fout;
 end if;
 end loop;
 ppd<= shift_data;
end process;

end design;

