Elsevier Editorial System(tm) for NIMA Proceedings
Manuscript Draft

Manuscript Number: NIMA_PROCEEDINGS-D-10-00193R1

Title: VME-based Data Acquisition System for the India-based Neutrino Observatory prototype
detector.

Article Type: Special issue:RPC 2010

Section/Category: Special issue: RPC2010

Keywords: Special issue:RPC2010; TIFR; VME, DAQ, Qt, QtRoot

Corresponding Author: Dr. Deepak Samuel, Ph.D

Corresponding Author's Institution: Tata Institute of Fundamental Research

First Author: Deepak Samuel, Ph.D

Order of Authors: Deepak Samuel, Ph.D

Abstract: The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton
Iron-Calorimeter (ICAL) to study neutrino oscillations. About 28,800 Resistive Plate Chambers will be
used as active detector elements in this experiment. Preliminary studies are currently underway and
as a part of it, a prototype detector was developed which now serves as a cosmic-ray telescope and as a
test-bench to study the indigenously built RPCs. A VME-based data acquisition system was designed for

this prototype system. Modern software tools were used in the designing of the DAQ software. The
design and development of this DAQ system are discussed.



Detailed Response to Reviewers

Response to Reviewer #1
comment 1: None of your figures is referenced anywhere in the article.

This has been rectified in this revised submission.

comment 2: The subsection 2.1 does not describe (also does not give external reference) the analog and
digital front end in enough detail (e.g. are the PA discriminators also controlled from the DAQ, etc.) and
it should reference Fig 1.

Since this paper focusses on the DAQ part, | delibrately avoided dwelling much into the details of AFE
and DFE. AFE and DFE related publications are in the process and therefore no suitable reference could
be cited. Nevertheless, | agree that the section needed some clarity and therefore it has been suitably
edited. | could not explain some things in details owing to the limit of 4 pages.

comment 3: In sec. 3.2: It would be nice if you could describe how the other threads are prioritized
(apart from the IST), a relevant event/data rate is not mentioned at all.

Section 3.3 has been modified to address the issue of thread prioritization also. event rate is reported in
the conclusion.

comment 4: Please add relevant items in your URL references where applicable.

References now have the author and the title of the page.

Thanks and Regards,

Deepak Samuel.



*Manuscript
Click here to view linked References

VME-based Data Acquisition System for the India-based Neutrino
Observatory prototype detector.

M.Bhuyan ® V.B.Chandratre” S.Dasgupta® V.M.Datar ¢ S.D.Kalmani® S.M.Lahamge * N.K.Mondal ®
P.Nagaraj® S.Pal® S.K.Rao® A.Redij* D.Samuel »*, M.N.Saraf* B.Satyanarayana® R.R.Shinde®
S.S.Upadhya®

aDepartment of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005, India.
b Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
¢ Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.

Abstract

The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton Iron-Calorimeter (ICAL) to study
neutrino oscillations. About 28,800 Resistive Plate Chambers will be used as active detector elements in this experiment. Preliminary
studies are currently underway and as a part of it, a prototype detector was developed which now serves as a cosmic-ray telescope
and as a test-bench to study the indigenously built RPCs. A VME-based data acquisition system was designed for this prototype
system. Modern software tools were used in the designing of the DAQ software. The design and development of this DAQ system

are discussed.

Key words: VME, DAQ, Qt, QtRoot,

1. Introduction

A detailed description of the INO project can be found in
other articles in this proceeding. A prototype of ICAL has
been developed at the Tata Institute of Fundamental Re-
search (TTFR). The detector consists of 12 layers of Im x 1m
RPC’s with 32 strips on either planes. The gap between the
layers is 15.8cm and the total height of the stack is 1.76m.
During the initial phase of the prototype design, a CAMAC
based DAQ was used. Due to the inherent limitations of
the CAMAC hardware, it was later decided to develop a
technically superior VME based DAQ system. The DAQ
software was revamped to augment the new hardware. The
software has a multi-threaded structure running behind an
intuitive GUIL. The DAQ supports concurrent plotting and
analysis, thanks to QtRoot [1], a plug-in developed at the
Brookhaven National Laboratory, which embeds ROOT’s
plotting canvas inside our Graphical User Interface (GUI)
framework. The software was written in C++ with Qt li-
braries for the front-end GUI design. The software runs on

*

Email address: samuel@tifr.res.in (D.Samuel).
1

a machine with 2.80 GHz Intel Xeon CPU with 1 GB RAM
with an open-source 32 bit Linux operating system.

2. Hardware
2.1. Signal Processing and Latching

Figure 1 is the block diagram of the signal processing
unit for the prototype.

Since the RPC’s operate in the avalanche mode, the strip
signals are amplified (80x) before being processed by the
Analog Front End (AFE) boards. Each RPC has a dedi-
cated AFE and a Digital Front End (DFE). The AFE has
a common threshold adjustable upto 500 mV for discrimi-
nation of the signals (ECL output). The AFE also houses a
trigger logic where the discriminator output of four chan-
nels (0,8,16,24; 1,9,17,25; 2,10,18,26; etc.,) are shaped to
50ns width and logically “OR”ed to get 8 pre-trigger signals
called TO.

The discriminated signals and the TO signals then pass
through the DFE where the discriminated signals are first
translated to TTL and stretched to a width of 700ns. The
DFE board has four sections in it:

~ T 1 AAA A


http://ees.elsevier.com/nima_proceedings/viewRCResults.aspx?pdf=1&docID=966&rev=1&fileID=28521&msid={6C616DFD-2101-4B09-BDF9-504F10D61A11}

(i) The Decoder which accepts the hand-shake signals
from the Control and Data Router (CDR) and con-
trols the mode of operation (i.e., Event / Noise Mon-
itoring).

(ii) The Event Section which handles the latching of the
strip-hit information. These latched data are flushed
out serially to the CDR, on receipt of an appropriate
signal from the Decoder unit.

(iii) The Noise Rate Monitoring Section which latches the
noise rate of the active strip or calibration signal on
receipt of a clock signal from the Decoder unit and
switches over to the next strip. At the end of the cycle
(3277 strip), the cycle is reset and the monitoring
continues from the first strip. The clocking is handled
by the DAQ system.

(iv) The Trigger Logic where various fold signals (1-Fold,
2-Fold, 3-Fold, 4-Fold) ! are generated from the TO
signals.

The CDR routes the control signals and the data signals
(Event Data/Noise Rate Data) while the Trigger and Tim-
ing router (TTR) routes timing signals to external measur-
ing and recording systems. The DAQ can access and control
the DFE sections only through these modules. The DAQ
does not have any access to the AFE board.

Noise Rates ~ Control |

Event Data

Fig. 1. The DAQ signal processing units.

2.2. VME Modules

The DAQ is mainly designed to track cosmic-muons that
pass through the 12 layer stack. Using this data, various
RPC parameters like efficiency, timing resolution, cluster
size etc., are estimated. Apart from this, other analysis like
zenith angle distribution and velocity distribution [3] of
cosmic-muons are also made.

1 1-Fold = T0g + T01 + T02 + T03 + T04 + T05 + T06 + T07
2-Fold =T0g-T0y +701-T02+T02-T03+T03-T04 +T04-T05+
TO0s5 - T0g + T0g - TO7 and so on.

The noise rate of the individual strips is also monitored
at regular intervals to ensure the stability of the detectors
during data acquisition.

Thus, there are two types of data are received by the
DAQ from the signal processing hardware discussed above.
They are:

— Event Data- This contains:

- The strip hit information, i.e., the x,y hit patterns
in the layers through which the particle has passed
through. This is read out by a I/O Module (Customized
CAEN V1495). This I/O Module also manages the
latching of data from the appropriate DFE boards us-
ing the control lines in the CDR.

- The timing information from each of these layers, from
the TTR unit. This is read out by a multi-hit TDC
(CAEN V1190).

— Noise Rates - This contains the noise rate of the in-
dividual strips. Four calibration signals and fold signals
are also received here. This is read out by a 24 bit scaler
(CAEN V1190) at regular intervals.

2.3. Trigger and Interrupts

For Cosmic-ray related studies, an 8-layer coincidence
i.e., the 1-Fold signals from 8 selected layers are logically
"AND”ed to generate a trigger. This coincidence trigger
also generates an interrupt via the TDC module, to read
out the Event Data.

The I/0 module manages the periodic read out of noise
rates and also generates an interrupt via the Scaler for the
same.

3. Software

During the primitive stages of an experiment, debugging
and troubleshooting of the detector is a frequent require-
ment. Plotting and display of relevant parameters like hit
information, noise rates, time spectrum etc., concurrently
during the acquisition of data is one main requirement in
such a scenario. A GUI is helpful in such cases in intuitively
guiding an user to the information that is sought, hiding all
the complexities in the background. The following software
and tools were used in building our DAQ software:

— Qt: It is a cross-platform application and Ul framework
from Nokia Corporation (LPGL License). Qt offers use-
ful C++ class libraries, which were used extensively in
developing the code [2].

- Qt Designer: This tool is a part of Qt SDK, which was

used to design our GUI.

- Qt Creator: Also a part of Qt SDK, this is an Integrated
Development Environment (IDE), used for coding and
project management.

— ROOT: Used for graphing and data analysis in the DAQ
framework. Saving data as ROOT objects helps in easier
analysis and plotting and therefore ROOT’s TTree class
was used for this purpose.



— QtRoot: This plug-in helps embed ROOT’s plotting can-
vases inside our GUI framework. This is our key to im-
plementing an integrated plotting and analysis environ-
ment in our DAQ application.

3.1. The GUI Front-end

The GUI was designed with the aim of providing the re-
quested information as fast as possible, hiding all complex-
ities from the user. The GUI incorporates a side-bar popu-
lated with often used functions and text and number entry
fields. The ROOT plotting canvas is set in the center. A
menu-bar allows users to switch between various canvases
available. The settings of VME modules can also be changed
in a separate window. The access to this window is also
through the menu-bar. For custom plotting (For example,
Time spectra, Trigger rates etc.,),the entry fields are im-
plemented inside a docking widget. These entry fields take
the inputs required for the "Draw” function in the TTree
class namely the branch name and the condition, thus inte-
grating all plotting and analysis features that ROOT offers,
into our framework. Figure 2 is a screen-shot of the GUI.

3.2. Back-end: Threads

As discussed in section 2.3, two types of interrupts are
generated. The Event Data read-out interrupt generated by
the TDC and the Noise Rate read-out interrupt generated
by the Scaler. The Event interrupt is random in nature as it
is a consequence of a particle passing through the detector
satisfying the coincidence condition.

The Noise Rate interrupt is periodic as it samples each
strip at a pre-defined frequency.

The DAQ back-end process was designed to have a multi-
threaded structure to support concurrent execution of var-
ious jobs in a prioritized manner thus enabling the appli-
cation to offer the advantage of a full-fledged live analy-
sis and plotting framework to the user. Although POSIX
(Portable Operating System Interface) threads are widely
used in C++, we have used the QThread class offered by
Qt to implement the threads. The QThread class supports
the “signal and slot” mechanism making the communication
between a thread and the GUI much simpler [4]. There are
four main threads that run in the background. They are:
— Interrupt Service Thread (IST)

— Event Thread
— Noise Rate Monitoring Thread and the
— Event Plotting Thread
The IST carries out the following jobs sequentially (cf.
Fig. 3):
(i) Waits on an interrupt signal.
(ii) On receiving an interrupt, all interrupts are disabled
via software.

(iii) Identifies the source of interrupt (TDC/Scaler) by
reading out the Interrupt Vector Register.

(iv) Acknowledges the interrupt.

‘Write Data to H Read Scaler/ TDC,

Shared Circular Event
Buffer Information

Fig. 3. The sequence of the Interrupt Service Thread.

(v) Reads data from the relevant modules and appends
them in a shared memory and triggers either the
Event Thread or the Noise Rate Monitoring Thread.

(vi) Enables interrupts.

The shared memory is a circular buffer which is allocated
in the heap during the initialization phase of the program.
Two shared memories are used, one for the Event data and
another for the Noise Rate data.

Both the Event Thread and the Noise Rate Monitor
Thread are semantically similar to each other in the sense
that they do same job but on different data. As soon as
the IST sends a trigger (sequence 5 of IST), the latest data
from the shared memory is appended to a file and the file
is finally saved at an appropriate moment.

The graphical display of strip hits of various layers is
helpful in cases where the detector and the electronics are
being tested. The display of the particle tracks through the
detector in real-time also gives a feeling of the status of
the detector. This is accomplished in the Event Plotting
Thread. Plotting of each and every event is not desirable
and therefore this thread is set to auto-trigger every n sec-
onds, where n is set by the user in the GUI. This thread
runs exclusively to plot the strip hit information in the lay-
ers. The thread reads the latest event, decodes them and
plot on the canvas. Simultaneously, the same data is sent
to a server. Users can access the plot of the strip hit infor-
mation from our web page [5].

3.3. Thread Prioritization, Synchronization and Plotting

As mentioned earlier, the QThread class has been used
to implement all the threads. Each thread is scheduled for
execution based on its priority. Qt offers several types of
priorities which can be assigned to the threads by the user.
The priorities assigned to the threads discussed above and
their description is illustrated in Figure 4. The IST is as-
signed the maximum priority as it executes time-critical
operations. The Event Thread and the Noise Rate Moni-
toring Thread are assigned normal priority as transfer of
data from the shared memory is not a time-critical opera-
tion, provided a proper thread synchronization mechanism
is used. The plotting of events is a process that can be safely
stopped or executed at a later point of time without hin-



INO DATA ACQUISITION VERSION 02::[TESTRUNOOO.ine] - [Events- 2D View]

X Ever
R 96076 o
W 96069

1054z

s 20 3 me

Custom Bin

11|

113

=
g

%

Fig. 2. Screen shot of the DAQ GUI, showing the embedded ROOT plotting canvas.

dering the data acquisition. Therefore, the Event Plotting
Thread is assigned a low priority.

Normal

Default priority of the
Operating System

(Event Thread, Noise Rate
Thread)

Low

Scheduled less often than Normal Priority
(Event Plotting Thread)

Fig. 4. Prioritization of the threads and their description.

The threads run at their own time scheduled by the Op-
erating System. However, when a file is being accessed by
one thread, for example, to plot the timing distribution
or the noise rate distribution, another access to the same
file should be avoided. To overcome such situations, the
threads are synchronized and files are protected within In-
ter Process Communication (IPC) objects called Mutex.
Here again, we have used the QMutex class by Qt to im-
plement the mutexes. The threads check the status of the
Mutex objects before writing to the file. In case the file is
being accessed by the user, the thread waits until the job
is completed and then proceeds with the writing.

4. Conclusion

The newly developed VME-based data acquisition sys-
tem for the INO prototype has shown an overall stable and

satisfactory performance. The transition from the CAMAC
bus to the VME bus was clearly felt with the improved trig-
ger rates. With this set-up, the DAQ can handle a trigger
rate of about 300Hz. Though this can be improved even fur-
ther, with a cosmic-muon trigger rate of only about 10Hz
for top and bottom layer coincidence, this was deemed to be
unnecessary for the prototype. Though varieties of tool are
available in the market, we have been successful in devel-
oping our DAQ using the best available Open-Source tools.
Qt has not only helped in designing professional GUI design
for our DAQ but also in developing a multi-threaded pro-
gram. The role of QtRoot in getting an integrated analysis
and plotting environment in our applications is definitely
worth a mention.

Acknowledgments

The INO project is funded by the Department of Atomic
Energy (DAE) and the Department of Science and Tech-
nology (DST), Government of India. Crucial contributions
from many INO collaborators to this paper are gratefully
acknowledged.

References

[1] V.Fine, The Qt ROOT Version for Unix, Windows and MacOS,
http://root.bnl.gov/, June 2010.

[2] Nokia Corporation, Qt - Cross-platform application and Ul
framework, http://qt.nokia.com/, June 2010.

(3] S. Pal et al, Velocity Measurement of Cosmic Muons using the
India-based Neutrino Observatory Prototype Detector, In this
proceeding, 2010.

[4] Nokia Corporation, Threads and QObjects,
http://doc.qt.nokia.com/4.6/threads-qobject.html, June 2010.

[5] TIFR-INO Collaboration, Real-Time Cosmic Muon Events,

http://www.hecr.tifr.res.in/~ino/c217_daq/daqweb/html/basic.html,

June 2010.



