Muon Track Reconstruction
Summer Internship Report
INO Project

Tata Institute of Fundamental research

Mainak Pal
KVPY Fellow
SA 10710066

IISER Kolkata

Abstract

Tracking the path of a charged paticle is an essential task in high-
energy physics. First, this report describes briefly the principles of KF
(Kalman Filter), an efficient method for track fitting in HEP experiments.
The next section includes discussion on momentum reconstruction of a
typical monte carlo simulated muon based on Bethe-Bloch energy loss.
Subsequently, in the report, the formulation for the theoretical prediction
of the path of the muons and calculation related to extrapolation of the
corresponding state vectors and propagator jacobian of the system for
KF based track fitting have been investigated in order to find out any
flaws which are giving rise to incorrect reconstructed momentum of the
system.

Introduction:

The entire simulation framework in INO ICAL detecctor consists of four steps,
namely event generation, event simulation, event digitisation, event
reconstruction. Track reconstruction comes in the last one and consists of
two steps: track finding, which selects hits belonging to a single track from
the set of hits created by all the charged particles in an event, and track fitting,
which fits the selected hits to a track model and determines its track parameters
at the interaction point. For the fitting purpose, KF is used as usual as in other
HEP experiments.



Principle of Kalman Filter:

The Kalman filter is a set of mathematical equations that provides an efficient
com- putational (recursive) means to estimate the state of a process, in a way
that mini- mizes the mean of the squared error. It deals with a system that is
subject to a random disturbance (process noise) during its evolution following
an equation of motion (system equation) the goal being extraction of the best
estimate of this system’s state at a given point from information collected at
multiple observation points (measurement sites) .
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The system equation is given by

zp = fro—1(Tr—1) + wp—1 = Fr—1@p—1 + wi_1 (1)

where fi_1is a non-linear function of state vector x;_1, called state prop-
agator and can be represented by a propagator matrix Fj_1.

wy_1is termed as the process noise.

The measurement equation is given by

mg = hg(zx) + € = Hpxp + € (2)

where hj is called the projector function and can be represented as the
projector matrix Hy, .

€ is the random measurement noise. We assume that there is no bias in
the either of the process noise and measurement noise, i.e.

<wp >=< ¢ >=0 (3)

The noise covariances are defined as Q) =< wyw] >, Vi =< erei > and
the estimation error covariance as C} = z} — ) where z} denotes predicted



state vector of system at k*site based on filtered data at it" site. x}c is termed
as predicted or filtered or smoothed state vector as i < k ,i =k , i >k
respectively.

The state vector and estimation error covariance are predicted for k'"step
based on k — 1% step as

oyt = Pzl (4)
and
Cy 'l =FraCFZIF | 4 Qi (5)

The 2 is constructed as

X° = [z )+ He (g =) —ma) Vi e (2 )+ Hy(af —2) ) —mi] (6)

The 2 which minimizes the x?is given by

af =2 P [(CFY T HE VT T HEV (g — e (2FTY) 0 (7)
The extrapolated estimation error covariance matrix comes out to be
Cr =[G )™ + HIV  H ™ (8)
The Kalman gain is defined as

Ky =[(CE Y P+ HI VI HY) ' HE Y, = oF HE V! 9)

So, finally the filtered state vector reads as

ok =af T+ [(CF) T + Ki(my — he(ef 1)) (10

Muon Momentum Reconstruction:

In INO ICAL simulation, the monte carlo simulated muon tracks are investi-
gated using the event display program VICE. Here is a typical example of the
data from which initial momentum of the muon has been reconstructed based
on the Bethe -Block Formula for energy loss. The ICAL code reconstructs the
momentum from curvature formula, i.e.

p=qBR

For muons whose path is completely within the entire ICAL detector (such
as the one shown), the initial energy equals the energy lost by it to the calorime-
ter. But the energy deposited is easily calculable using Bethe-Bloch formula.
Hence, initial momentum can be estimated.



Track finding (The red points are the hits from the muon only)
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Track fitting (The black points show the filtered path of the muon)
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So, this analysis shows that the reconstructed initial momentum of the muon
(over 2.5 GeV) using Bethe-Bloch formula significantly differs from the true
initial momentum (2 GeV). On the contrary, the curvature formula, which is
used in present ICAL code, gives a better estimation of the momentum (about
1.88 GeV).

Track Extrapolation: Theoretical Prediction

Equation of motion of a charged particle-

The differential equation of motion of the negatively charged muon is given by
Lorentz force equation

dp

dt

where k is a coefficient appearing due to choice of units. Now, magnetic

force doesn’t do work and hence v = \?}\ and p = |p] are constants. Hence the
Lorentz equation reads

:KqT)Xé (11)

dp = kq¥ x Bds/v (12)

—

Introducing an unit vector € = ¥/v = p/p , the Lorentz equation gives

eyB, —e,By
o q9 . 5 q
de=r.-.€x Bds=r>.| e,By, —e;B, .| ds (13)
p p e, By — ey B,

Now in ICAL detector the RPC are || to X —Y planes. So, it’s convenient to

express x and y coordinate of the muon as a function of z and describe the state

of motion of the muon by the state vector ( * y t, t, < ) wheret, = ‘Zl—”t”

P
and t, = %

It is clear that instead of z coordinates of the particle, if ‘fi—f and %’ are
mentioned, it fixes he shape of the path. % then describes the motion instead

of p

Now,
_dr  dr dz vy vp v, ey
T dz  dt'dt v, vl v e,
Similarly
_ %
ty—g

So, calculating the differential track directions, we get

dese, — egde
dt, = Lt —
€Z p

2 2
eye.B, —e;By —eiBy + egey By

2
z

ds

(&



=k L(t, B. — (1+12).B, + tot,.B,).ds
(b :

(just by insertion of components of dé from modified Lorentz force equation)
Similarly

dty = kL ((1412).B, — t,t,.B, + 1,.B).ds
p

Now, using the relation ds = (1 + t2 + t2)1/2.dz , we get the differential
equations of motion in terms of the state vectors

r =i, (14)
y =t (15)
t = ﬁ.%.u + 12 4 22 (t,.B. — (14 12).By + t,t,.By) (16)
t = n.%.a + 12 4 2)V2 (1 4+ £2).B, — toty. By +t,.B).ds (17)
() =0 (18)

Extrapolation of State Parameters:

To proceed to extrapolation of the track we first define two vectors as:

A1+ (tat,, —(1+12), t, ) (19)
q
b(z) :H.E.,/1+t§+t§.( (1412), —taly, —ts ) (20)

The motivation of these definition comes from the differential equations for
tyand t,. Next we notice the z dependence of the magnetic field. In ICAL mass
the magnetic field at a particular (z, y) position doesn’t vary as one moves
from one layer of iron || to x-y plane to another. It is only a function of x
and y coordinate. However, the x and y position of the muon themselves being
function of z their is an implicit z dependence. That is:

a(z) = k.

hSEIES

B(z) = B(w(2),y(2)) = ( Ba(@(2),y(2)), By(#(2),y(2)), B:(2(2),y(2)) ) = ( Ba(2), By(2) )

The next thing to consider is that B, = 0 in ICAL experiment. So, finally

B(z) = (B.(2), By(2))

Now, consider a generic function T with no explicit z dependence, like this:



so that
oT oT oT
/ ) hdall
T/ = gtk + o) = T B ) (o) + G0 @)
Now, define:
orT oT
T (2) = aftmail(z) + aTybz‘l(Z) (22)

so that we can write (19) in compact form

Z Bil(Z)TZ ( )

i]=x,Y,z

It’s easy to check that T, (2) = T}, (t2(2), ty(2))
Now, we recursively define

aﬂl...ik_l 81111 i1
Ti, i (2) = —or. Y (2) + Tb (2) (23)

where obviously T;, ., (2) = Ti, i, (t2(2), ty(2))
With these definitions and skipping the calculation, we get to an analytic
integral expression for T'(z.) as follows:

T(ze):T(zo)+i S Tya(z0). (/Z:E.../z:k_lBil(zl)...Bik(zk)dzk...dm)

k=111,..., 1e=T,Y,2

+ > / / Bi (21)---Biy iy (2641) Ty iy (1) d2k 41 d2n

11,0l 41=2,Y,2
(24)
Now, if we replace 1" by t,and ¢, seperately, we get the analytic expressions:

L) =t Y e ( / / By (21). (zk)dzk...dzl>

k=11%1,...,ik=2,y,2
(25)

ty(ze):ty(Z())‘Fi: STty (2 </ / By, (zx)dz.. dz1>

k=11%1,...,ix=2,y,2
(26)



and subsequently

2(2) = 2(20) + / () (27)

20

sz =ue)+ [ 1z (28)

20

Next, we define some quantities as magnetic field integrals as follows:

Siy..ip(Ze) = </ / Bi, (#1)- (zk)dzk...dzl) (29)

Siv i (2) = / s (2)d= (30)

and
— g 2 2
h=rlJlrd e (31)
Ail---ik = tzil...ik (ZO)/hk (32)
Dilu-ik = tyil,.,ik (ZO)/h’k (33)

With these definitions, the expressions look like:

z(ze) = (20) + (2e — 20)ta(20) +Z Z hkAn i iy i (34)

k=11d1,...,i%

y(ze) = y(20) + (ze — 20)ty (20 +Z Z h* Dy, i i (35)

k= 111 ..... ’ik

te(2ze) = tz(20) + Z Z WA, iy Siy i (36)

k=11d1,...,i%

ty(ze) = ty(20) + Z Z WDy, i Siy . in (37)

k=111,...,ik

where s;, i, Siy. > Aiy.insDiy i, are needed to be calculated upto differ-

ent orders required. We first calculate the 1st order field integrals which is okay
for track finding purpose. First order field-integrals are calculated to be

31'1 = (Ze — ZO)Bil (38)

2
S, = Mgil (39)



and the first order analytic expressions of the state parameters are calculated
to be

te(ze) = to(20) + h(ze — 20)[taty Be — (1 +t2)B,] (40)

ty(ze) = ty(20) + h(ze = 20)[(1 + 7) By — taty By] (41)
2(ze) = x(20) + (2o — 20)tz(20) + g(ze = 20)°[taty B — (1+13)B,]  (42)

U(ze) = (z0) + (e — )ty(20) + (ze — 201+ £)B. — tat, B, (43)

Calculation of Propagator Matrix (using analytic expres-
sion):
Once the equations for state vector are known, the next task is to calculate

the propagator matrix F which is required to extrapolate the covariance matrix
from one site to the next one. The propagator matrix is given by

Oz, Oz, Oz, Oz, Oz,
Oxo 9yo Oty Oty o($)o
Oye 9ye OYe 0ye 9Ye
Oz dyo (’)tIO (’)tyo 8(%)0
dr(z.) Oty, Ota, Ots, Ota, Oty
F= ) = do dyo  Oty,  Ot,,  O(L)o
T(ZO) 8t'.‘/e 8t:‘/e at?/e at?/e at?}e
Ba;o 8y0 Otwo Otyo 8( % )0
q q q q

a(g)e 3(;)e 8(;)e 8(;)a a(g)e
Baco 8y0 3tw0 3ty0 8(%)0

which on a bit simplification reads

oz, Oz, Oz,
L0 gas o (D)o
0 1 DY  Oye dye
Otzy Oty  9(1)
0 0 Qe Olx oty
F= Otey  Ot,,  0(L)o
0 0 2 Oty, Oty,
9oy Oty  9(L)o
9(g)e  9(P)e
00 FE= FE (149

For extrapolation of the state vector, an analytic expression of state vector
at a site in terms of the state vector at the previous site is needed unlike Runge-
kutta method which does the extrapolation numerically.

The calculated entries in the matrix are shown here:

0z(ze) 1 9 t2 tr(1+t2)
= (2e—20)+=(2e—20)%h | Buty { 1 + ——2—— t — B, { 2 + 22
Dta(zg) (e 20) T (zeR0) A R el Gaeth b g
(44)




O (zc) 2 ty ty(1+13)
= —(2e — 20)%h | Byty {1 - B z 4
Oty (20) (e Tirete Y142+ 12 )
0x(ze 1 1
8(61)0) = Sr(l+ 24 12)7 (20 — 20) { Botaty — By(1+t2)} (46)
p
Oy(z) 1 ) to(1+t2) 2
= 5(2 —20)°h | By—75—"5 — Byty {1 + ——5—— 4
Otz (20) g7~ 20) 1+e2+¢2 VY * 1+t2+¢2 (47)
0x(ze 1 1
a((q)o) = Rl + 8+ 1) (2 — 20)* {Batuty — B,(1+£2)}  (48)
p
Ay(ze) 1 ) te(1412) 2
= (% — B, — Byt, {1+ —2—— 4
Dra(zo) 20 )M B m B\ It e | (49)
Oy(ze) 1 ) (1420t t2
= (2e— —(2e— h | Bz 2t — 2 L Bty <14+ —F—
Bt (o) (2 Z())+2(Z o) vt T Zie y + 7 era
(50)
Oy(ze) 1 N
3Dy = 3+ 2+ 12)7 (2o — 20)? { Bo (L + £]) — Bytaty} (51)
Ot (ze) t2 (1+1£2)
=1 - Boty 41+ ——2—— % — Byt, {2 z
2 (20) + (2e zo)h[ wty{ - e ta +1+t§+t§
(52)
Oty (ze) ti ty(L+13)
= (2 — Byt, {1+ —2—— 1 - B z
aty(ZO) (Ze Zo)h ztw + 1 + t% + t% yl + t% +t?2J (53)
8t$ Ze 1
8(§)O> = k(L + 12 +17)7 (2e — 20) [Bataty — By(1+t2)] (54)
p
Oty (ze) to(1417) 12
= —_ ——— 1 — z
Otz (20) (ze = z0) | By 1+t2+¢2 vty {1+ 1+82 182 (55)
oty (ze) (1+1) t
=1 - Boty 24+ —— L b — Byt 4 1+ ——2L——
(56)
Oty (ze) 1
#%)O = R(L+t5 4+ 12)7 (2 — 20) [Bo(1 +t2) — Bytat,)] (57)

The equations mentioned above were also calculated previously and are
hereby reinvestigated to be okay. However, the first two of the following deriva-
tives were previously assumed to vanish which seems to be one source of error.
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o(1). 1 gor 4 1 q(aE) b

=- — rpdz = — = | =—ds | ———
Ot (20) Bpocpo Os (1+12 +12)2 r Bpocpo \ Os L+t2 412
(58)
q
a(p)ze__ 1 iajtiy dy — — 1 q(@Eds)ty
oty (20) Bpocpo 0s (1412 + tg)% r Bpocpo \ Os L+2+1¢2
(59)
q
ﬁ(p)zﬁ _q_ 2 (a) 9B, (60)
p/o Os

o (2) gBe
p 20
These modification gives better result, but not satisfactory. So, a bit different
approach was taken to calculate these terms which are shown below:
We start considering the dissipative force F' along with the Lorentz force
Frag-

Ay = . L
dIZ:Fmag—&—F:K;q(ﬁxB)—i—F
dp; ;
CZ = rq(7 x B); + F;

B, is 0 in here. So, the concerned equations are:

d d d
pitl = pn K'/q./Uz.Byj + ij = ply — Kkq.cos(0).Byds + ij (61)
v v v

d d d
Pt = pl — kg, By + By = pl' 4 kgcos(0).Bods + Fy = (62)
v v v

d d d
I = kg (0e By v, By). oA F. T = pl g (te By —t, By).cos(6).ds+ .5
v v v

(63)

Writing cos(8).ds = dz , we get,

d
ptl = pn — kq.Bydz + FI?S (64)

ds

pZ'H = py + kq.Bydz + F),. » (65)
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ds

pg-i-l _ pZ + /gq.(tsz — tme).dZ + sz (66)
Now, the dissipative force comes from the Bethe-Block Energy loss % and
should be given by 2€.9 ie. F; = %.%
So,
d dE p; d OF E p; OF 1 p;
o ket =P oo, (67)
v ds p Bec  Oi pcp 8ﬂp
& hence
OE 1p
nH = — kq.Bydz + 3757 pdz (68)
n OE 1p
py+1fpy+/<;qB d2+8—B—y pdz (69)
n n OF 1p,
pitt = py + kq.(te By — tyBy).dz + &B;pd'z (70)
Now,
n+1 n
8(%)( +1) 4 Apn+1)
ot {ptrD}2" gyl
_ \/{ (n+1)}2+{ (n+1)}2+{ (n+1)}2
P o [V . "
(n+1) (n+1) (n+1)
I S PN VL S G L A VRS V(O S BT o1
1l [ S
&
g\(n+1 2 n+1 n+1
6(;1))( ) _ p() op(n+1) _ p() 1 (n_H)ap; +1) . (n+1)ap§ +1) . (n+1)ap
8(%)(71) p(n+1) op(n) pnt1) | pnt1) " |5 op(n) Y Ap(n) z

(n+1)

Using expressions for p; (n)

in terms of p; ', we get:

a(L)n+h) q OE 1 OE 1
z =— (0) _ jqBydz + = P2 dz} { (n) _ /iner—f& dz}
ot {pCr Dy [{pz T 0B " e ! 0z 3 p
OF 1p 0 OF 1p
(n) Y Py (n) =Py
+ + kgB,dz + dz} { + kqB,dz + d}
{py 4% dy B p PACR L 5 dy B p



OE 1p, 0 , OFE 1 p,
+{p§"> + kg (t;mBy — "B, )d + 55 5, }815(-”) {pg") + kg (t;")By ~ "B, )d + 5 }]

B p
(73)
&

g\(n+1 n n n n+1 n+1 n+1
3(p)( ) _ p™) op(n+1) _ p™ 1 (nﬂ)apg ) N (nH)aP( ) . (n+1)ap,(z )
()™ D ) ") oD ) pern |Pe T Temy TPy Ty TP T

OF 1p
(") — kqBy,d z d}
Py — kqBydz + — 2
M>{ oxBp"

0F 1 0 0FE 1 p,
—|—{p§") + rqBydz + ayﬁlz!pdz} ) { (") 4 kqB,dz + aﬁg& dz}

OF 1p 0 OF 1p
(n) (Mg _ ¢ ——_fz () mp _ 0 il .
+ {pz + kg (tw B, —t, BgC) dz + 925 p pdz} PO {pz + Kq (tI B, —t, Bz> dz + 9273 p pdz}]

(74)
Writing p; = p.\/ﬁ,we get
n+1
8(%)( ) = - 7___x
ot {pntD}3
5 i+ iy 00 P [+ {872 + {t5}2)2
OE 1 )
+{W+“B*+aﬁmd% O e
14+ {tz"}2 + {t;" }?]2
+3p™ 4k (t(”)B —t"B )d +8—El& dz p ¢ —p™ » + kqBydz ¢]
y2p q\lz Py —ty Do 9z B p p p i+ {t&”)]ﬁ n {tz(/n)}Q]% 45y
(75)
H(2)(n+D) (n)
(p)< — =~ oD 3[{1’9) ~ waByde + 97 % pa } —p"E < )ty (1278
oty {p} 0z f p [+ {2 + {22

14



1y

OE 1p p(™) oF p
+{p™ 4 kgB dz—l—ypdz} + —.Cdz — pmitln) -
{ Y ! gy B p \/1 My e B O S {125

OE 1 p, ¢(n)
+ {pi”) + Kq (ti")By - t?g")Bm> dz + appdz} {—p(") [ Y — anydz}}

2B p 1+ {tV)2 + {t5)2)3
(76)

o(4)n+h) pm 2 OF 1 Q) o [10E

P _ (n) _ 9L 1Pz z (n) 108

a(L)m {p<"+”} [{p”” waBydz+ 5, Bp pdz} (n) (n) Tl op(™ {6 ax} puz
» 1+ {12 4 0y

(n)
E1 10FE
+ {pén) + kgBydz + gﬁpypdz} by + ™ p) a(n) [5 8@} pdz

ypp \/1 + {tf(bn)}z + {t?g”)}Q p Y

E 1 1 10F
+ {p,(zn) + kg (té")By - t?(/")Bg;) dz + %zﬁl;zpdz} \/ (n) (n) + 88( ) [6?’92} pdz ]
L+ {tVy2 + (g2 P
(77)

Apparently these equations are okay to give the correct last row entries for
the propagator matrix, however that is yet to check.
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