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Abstract

Tracking the path of a charged paticle is an essential task in high-
energy physics. First, this report describes brie�y the principles of KF
(Kalman Filter), an e�cient method for track �tting in HEP experiments.
The next section includes discussion on momentum reconstruction of a
typical monte carlo simulated muon based on Bethe-Bloch energy loss.
Subsequently, in the report, the formulation for the theoretical prediction
of the path of the muons and calculation related to extrapolation of the
corresponding state vectors and propagator jacobian of the system for
KF based track �tting have been investigated in order to �nd out any
�aws which are giving rise to incorrect reconstructed momentum of the
system.

Introduction:

The entire simulation framework in INO ICAL detecctor consists of four steps,
namely event generation, event simulation, event digitisation, event

reconstruction. Track reconstruction comes in the last one and consists of
two steps: track �nding, which selects hits belonging to a single track from
the set of hits created by all the charged particles in an event, and track �tting,
which �ts the selected hits to a track model and determines its track parameters
at the interaction point. For the �tting purpose, KF is used as usual as in other
HEP experiments.
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Principle of Kalman Filter:

The Kalman �lter is a set of mathematical equations that provides an e�cient
com- putational (recursive) means to estimate the state of a process, in a way
that mini- mizes the mean of the squared error. It deals with a system that is
subject to a random disturbance (process noise) during its evolution following
an equation of motion (system equation) the goal being extraction of the best
estimate of this system's state at a given point from information collected at
multiple observation points (measurement sites) .

The system equation is given by

xk = fk−1(xk−1) + wk−1 = Fk−1xk−1 + wk−1 (1)

where fk−1is a non-linear function of state vector xk−1, called state prop-

agator and can be represented by a propagator matrix Fk−1.
wk−1is termed as the process noise.

The measurement equation is given by

mk = hk(xk) + εk = Hkxk + εk (2)

where hk is called the projector function and can be represented as the
projector matrix Hk .

εk is the random measurement noise. We assume that there is no bias in
the either of the process noise and measurement noise, i.e.

< wk >=< εk >= 0 (3)

The noise covariances are de�ned as Qk =< wkw
T
k >, Vk =< εkε

T
k > and

the estimation error covariance as Ci
k = xik−x0k where xik denotes predicted
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state vector of system at kthsite based on �ltered data at ith site. xik is termed
as predicted or �ltered or smoothed state vector as i < k , i = k , i > k
respectively.

The state vector and estimation error covariance are predicted for kthstep
based on k − 1th step as

xk−1
k = Fk−1x

k−1
k−1 (4)

and

Ck−1
k = Fk−1C

k−1
k−1F

T
k−1 +Qk−1 (5)

The χ2 is constructed as

χ2 = [hk(x
k−1
k )+Hk(x

k
k−xk−1

k )−mk]
TV −1

k [hk(x
k−1
k )+Hk(x

k
k−xk−1

k )−mk] (6)

The xkk which minimizes the χ2is given by

xkk = xk=1
k + [(Ck−1

k )−1 +HT
k V

−1
k Hk]

−1HT
k V

−1
k (mk − hk(xk−1

k )) (7)

The extrapolated estimation error covariance matrix comes out to be

Ck
k = [(Ck−1

k )−1 +HT
k V

−1
k Hk]

−1 (8)

The Kalman gain is de�ned as

Kk = [(Ck−1
k )−1 +HT

k V
−1
k Hk]

−1HT
k V

−1
k = Ck

kH
T
k V

−1
k (9)

So, �nally the �ltered state vector reads as

xkk = xk=1
k + [(Ck−1

k )−1 +Kk(mk − hk(xk−1
k )) (10)

Muon Momentum Reconstruction:

In INO ICAL simulation, the monte carlo simulated muon tracks are investi-
gated using the event display program VICE. Here is a typical example of the
data from which initial momentum of the muon has been reconstructed based
on the Bethe -Block Formula for energy loss. The ICAL code reconstructs the
momentum from curvature formula, i.e.

p = qBR

For muons whose path is completely within the entire ICAL detector (such
as the one shown), the initial energy equals the energy lost by it to the calorime-
ter. But the energy deposited is easily calculable using Bethe-Bloch formula.
Hence, initial momentum can be estimated.
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Track �nding (The red points are the hits from the muon only)

Track �tting (The black points show the �ltered path of the muon)
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So, this analysis shows that the reconstructed initial momentum of the muon
(over 2.5 GeV) using Bethe-Bloch formula signi�cantly di�ers from the true
initial momentum (2 GeV). On the contrary, the curvature formula, which is
used in present ICAL code, gives a better estimation of the momentum (about
1.88 GeV).

Track Extrapolation: Theoretical Prediction

Equation of motion of a charged particle-

The di�erential equation of motion of the negatively charged muon is given by
Lorentz force equation

d~p

dt
= κq~v × ~B (11)

where κ is a coe�cient appearing due to choice of units. Now, magnetic

force doesn't do work and hence v = ~|v| and p = |~p| are constants. Hence the
Lorentz equation reads

d~p = κq ~v × ~B ds/v (12)

Introducing an unit vector ~e = ~v/v = ~p/p , the Lorentz equation gives

d~e = κ.
q

p
.~e× ~B.ds = κ

q

p
.

 eyBz − ezBy

ezBx − exBz

exBy − eyBx

.

 ds (13)

Now in ICAL detector the RPC are || to X−Y planes. So, it's convenient to
express x and y coordinate of the muon as a function of z and describe the state
of motion of the muon by the state vector ( x y tx ty

q
p ) where tx = dx

dt

and ty = dy
dt

It is clear that instead of z coordinates of the particle, if dx
dt and dy

dt are
mentioned, it �xes he shape of the path. q

p then describes the motion instead
of p

Now,

tx =
dx

dz
=
dx

dt
/
dz

dt
=
vx
vz

=
vx
v
/
vz
v

=
ex
ez

Similarly

ty =
ey
ez

So, calculating the di�erential track directions, we get

dtx =
dexez − exdez

e2z
= κ.

q

p
.
eyezBz − e2zBy − e2xBy + exeyBx

e2z
.ds

6



= κ.
q

p
.(ty.Bz − (1 + t2x).By + txty.Bx).ds

(just by insertion of components of d~e from modi�ed Lorentz force equation)
Similarly

dty = κ.
q

p
.((1 + t2y).Bx − txty.By + tx.B).ds

Now, using the relation ds = (1 + t2x + t2y)
1/2.dz , we get the di�erential

equations of motion in terms of the state vectors

x
′
= tx (14)

y
′
= ty (15)

t
′

x = κ.
q

p
.(1 + t2x + t2y)

1/2.(ty.Bz − (1 + t2x).By + txty.Bx) (16)

t
′

y = κ.
q

p
.(1 + t2x + t2y)

1/2.((1 + t2y).Bx − txty.By + tx.B).ds (17)

(
q

p
)
′
= 0 (18)

Extrapolation of State Parameters:

To proceed to extrapolation of the track we �rst de�ne two vectors as:

a(z) ≡ κ.q
p
.
√
1 + t2x + t2y.

(
txty, −(1 + t2x), ty

)
(19)

b(z) = κ.
q

p
.
√
1 + t2x + t2y.

(
(1 + t2y), −txty, −tx

)
(20)

The motivation of these de�nition comes from the di�erential equations for
txand ty. Next we notice the z dependence of the magnetic �eld. In ICAL mass
the magnetic �eld at a particular (x, y) position doesn't vary as one moves
from one layer of iron || to x-y plane to another. It is only a function of x
and y coordinate. However, the x and y position of the muon themselves being
function of z their is an implicit z dependence. That is:

B(z) ≡ B(x(z), y(z)) ≡
(
Bx(x(z), y(z)), By(x(z), y(z)), Bz(x(z), y(z))

)
≡
(
Bx(z), By(z)

)
The next thing to consider is that Bz = 0 in ICAL experiment. So, �nally

B(z) ≡ (Bx(z), By(z))

Now, consider a generic function T with no explicit z dependence, like this:
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T (z) ≡ T (tx(z), ty(z))

so that

T /(z) =
∂T

∂tx
t/x(z) +

∂T

∂ty
t/y(z) =

∑
i1=x,y,z

Bi1(z)

(
∂T

∂tx
ai1(z) +

∂T

∂ty
bi1(z)

)
(21)

Now, de�ne:

Ti1(z) ≡
∂T

∂tx
ai1(z) +

∂T

∂ty
bi1(z) (22)

so that we can write (19) in compact form

T /(z) =
∑

i1=x,y,z

Bi1(z)Ti1(z)

It's easy to check that Ti1(z) ≡ Ti1(tx(z), ty(z))
Now, we recursively de�ne

Ti1...ik(z) ≡
∂Ti1...ik−1

∂tx
aik(z) +

∂Ti1...ik−1

∂ty
bik(z) (23)

where obviously Ti1...ik(z) ≡ Ti1...ik(tx(z), ty(z))
With these de�nitions and skipping the calculation, we get to an analytic

integral expression for T (ze) as follows:

T (ze) = T (z0)+

n∑
k=1

∑
i1,...,ik=x,y,z

Ti1...ik(z0).

(ˆ ze

z0

...

ˆ zk−1

z0

Bi1(z1)...Bik(zk)dzk...dz1

)

+
∑

i1,...,ik+1=x,y,z

ˆ ze

z0

...

ˆ zk

z0

Bi1(z1)...Bik+1
(zk+1)Ti1...ik+1

(zk+1)dzk+1...dz1

(24)
Now, if we replace T by txand ty seperately, we get the analytic expressions:

tx(ze) = tx(z0)+

n∑
k=1

∑
i1,...,ik=x,y,z

txi1...ik
(z0).

(ˆ ze

z0

...

ˆ zk−1

z0

Bi1(z1)...Bik(zk)dzk...dz1

)
(25)

ty(ze) = ty(z0)+

n∑
k=1

∑
i1,...,ik=x,y,z

tyi1...ik
(z0).

(ˆ ze

z0

...

ˆ zk−1

z0

Bi1(z1)...Bik(zk)dzk...dz1

)
(26)

8



and subsequently

x(ze) = x(z0) +

ˆ ze

z0

tx(z)dz (27)

y(ze) = y(z0) +

ˆ ze

z0

ty(z)dz (28)

Next, we de�ne some quantities as magnetic �eld integrals as follows:

si1...ik(ze) =

(ˆ ze

z0

...

ˆ zk−1

z0

Bi1(z1)...Bik(zk)dzk...dz1

)
(29)

Si1...ik(ze) =

ˆ ze

z0

si1...ik(z)dz (30)

and

h = κ.
q

p
.
√
1 + t2x + t2y (31)

Ai1...ik = txi1...ik
(z0)/h

k (32)

Di1...ik = tyi1...ik
(z0)/h

k (33)

With these de�nitions, the expressions look like:

x(ze) = x(z0) + (ze − z0)tx(z0) +
n∑

k=1

∑
i1,...,ik

hkAi1...ikSi1...ik (34)

y(ze) = y(z0) + (ze − z0)ty(z0) +
n∑

k=1

∑
i1,...,ik

hkDi1...ikSi1...ik (35)

tx(ze) = tx(z0) +

n∑
k=1

∑
i1,...,ik

hkAi1...iksi1...ik (36)

ty(ze) = ty(z0) +

n∑
k=1

∑
i1,...,ik

hkDi1...iksi1...ik (37)

where si1...ik , Si1...ik , Ai1...ik ,Di1...ik are needed to be calculated upto di�er-
ent orders required. We �rst calculate the 1st order �eld integrals which is okay
for track �nding purpose. First order �eld-integrals are calculated to be

si1 = (ze − z0)Bi1 (38)

Si1 =
(ze − z0)2

2
Bi1 (39)
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and the �rst order analytic expressions of the state parameters are calculated
to be

tx(ze) = tx(z0) + h(ze − z0)[txtyBx − (1 + t2x)By] (40)

ty(ze) = ty(z0) + h(ze − z0)[(1 + t2y)Bx − txtyBy] (41)

x(ze) = x(z0) + (ze − z0)tx(z0) +
h

2
(ze − z0)2[txtyBx − (1 + t2x)By] (42)

y(ze) = y(z0) + (ze − z0)ty(z0) +
h

2
(ze − z0)2[(1 + t2y)Bx − txtyBy] (43)

Calculation of Propagator Matrix (using analytic expres-
sion):

Once the equations for state vector are known, the next task is to calculate
the propagator matrix F which is required to extrapolate the covariance matrix
from one site to the next one. The propagator matrix is given by

F =
d~r(ze)

d~r(z0)
≡



∂xe

∂x0

∂xe

∂y0

∂xe

∂tx0

∂xe

∂ty0

∂xe

∂( q
p )0

∂ye

∂x0

∂ye

∂y0

∂ye

∂tx0

∂ye

∂ty0

∂ye

∂( q
p )0

∂txe

∂x0

∂txe

∂y0

∂txe

∂tx0

∂txe

∂ty0

∂txe

∂( q
p )0

∂tye
∂x0

∂tye
∂y0

∂tye
∂tx0

∂tye
∂ty0

∂tye
∂( q

p )0
∂( q

p )e

∂x0

∂( q
p )e

∂y0

∂( q
p )e

∂tx0

∂( q
p )e

∂ty0

∂( q
p )e

∂( q
p )0


which on a bit simpli�cation reads

F =



1 0 ∂xe

∂tx0

∂xe

∂ty0

∂xe

∂( q
p )0

0 1 ∂ye

∂tx0

∂ye

∂ty0

∂ye

∂( q
p )0

0 0
∂txe

∂tx0

∂txe

∂ty0

∂txe

∂( q
p )0

0 0
∂tye
∂tx0

∂tye
∂ty0

∂tye
∂( q

p )0

0 0
∂( q

p )e

∂tx0

∂( q
p )e

∂ty0
(1 + ε)


For extrapolation of the state vector, an analytic expression of state vector

at a site in terms of the state vector at the previous site is needed unlike Runge-
kutta method which does the extrapolation numerically.

The calculated entries in the matrix are shown here:

∂x(ze)

∂tx(z0)
= (ze−z0)+

1

2
(ze−z0)2h

[
Bxty

{
1 +

t2x
1 + t2x + t2y

}
−By

{
2tx +

tx(1 + t2x)

1 + t2x + t2y

}]
(44)
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∂x(ze)

∂ty(z0)
=

1

2
(ze − z0)2h

[
Bxtx

{
1 +

t2y
1 + t2x + t2y

}
−By

ty(1 + t2x)

1 + t2x + t2y

]
(45)

∂x(ze)

∂( qp )0
=

1

2
κ(1 + t2x + t2y)

1
2 (ze − z0)2

{
Bxtxty −By(1 + t2x)

}
(46)

∂y(ze)

∂tx(z0)
=

1

2
(ze − z0)2h

[
Bx

tx(1 + t2y)

1 + t2x + t2y
−Byty

{
1 +

t2x
1 + t2x + t2y

}]
(47)

∂x(ze)

∂( qp )0
=

1

2
κ(1 + t2x + t2y)

1
2 (ze − z0)2

{
Bxtxty −By(1 + t2x)

}
(48)

∂y(ze)

∂tx(z0)
=

1

2
(ze − z0)2h

[
Bx

tx(1 + t2y)

1 + t2x + t2y
−Byty

{
1 +

t2x
1 + t2x + t2y

}]
(49)

∂y(ze)

∂ty(z0)
= (ze−z0)+

1

2
(ze−z0)2h

[
Bx

{
2ty +

(1 + t2y)ty

1 + t2x + t2y

}
−Bytx

{
1 +

t2y
1 + t2x + t2y

}]
(50)

∂y(ze)

∂( qp )0
=

1

2
κ(1 + t2x + t2y)

1
2 (ze − z0)2

{
Bx(1 + t2y)−Bytxty

}
(51)

∂tx(ze)

∂tx(z0)
= 1 + (ze − z0)h

[
Bxty

{
1 +

t2x
1 + t2x + t2y

}
−Bytx

{
2 +

(1 + t2x)

1 + t2x + t2y

}]
(52)

∂tx(ze)

∂ty(z0)
= (ze − z0)h

[
Bxtx

{
1 +

t2y
1 + t2x + t2y

}
−By

ty(1 + t2x)

1 + t2x + t2y

]
(53)

∂tx(ze)

∂( qp )0
= κ(1 + t2x + t2y)

1
2 (ze − z0)

[
Bxtxty −By(1 + t2x)

]
(54)

∂ty(ze)

∂tx(z0)
= (ze − z0)h

[
Bx

tx(1 + t2y)

1 + t2x + t2y
−Byty

{
1 +

t2x
1 + t2x + t2y

}]
(55)

∂ty(ze)

∂ty(z0)
= 1 + (ze − z0)h

[
Bxty

{
2 +

(1 + t2y)

1 + t2x + t2y

}
−Bytx

{
1 +

t2y
1 + t2x + t2y

}]
(56)

∂ty(ze)

∂( qp )0
= κ(1 + t2x + t2y)

1
2 (ze − z0)

[
Bx(1 + t2y)−Bytxty)

]
(57)

The equations mentioned above were also calculated previously and are
hereby reinvestigated to be okay. However, the �rst two of the following deriva-
tives were previously assumed to vanish which seems to be one source of error.
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∂
(

q
p

)
ze

∂tx(z0)
= − 1

βp0c

q

p0

∂E

∂s

tx

(1 + t2x + t2y)
1
2

ρ dz = − 1

βp0c

q

p0

(
∂E

∂s
ds

)
tx

1 + t2x + t2y
(58)

∂
(

q
p

)
ze

∂ty(z0)
= − 1

βp0c

q

p0

∂E

∂s

ty

(1 + t2x + t2y)
1
2

ρ dz = − 1

βp0c

q

p0

(
∂E

∂s
ds

)
ty

1 + t2x + t2y
(59)

∂
(

q
p

)
ze

∂
(

q
p

)
z0

= 1− 2

qβc

(
q

p

)
0

∂E

∂s
ds (60)

These modi�cation gives better result, but not satisfactory. So, a bit di�erent
approach was taken to calculate these terms which are shown below:

We start considering the dissipative force F along with the Lorentz force
Fmag.

d~p

dt
= ~Fmag + ~F = κq(~v × ~B) + ~F

=⇒ dpi
dt

= κq(~v × ~B)i + Fi

=⇒ dpi = κq(~v × ~B)i
ds

v
+ Fi

ds

v

Bz is 0 in here. So, the concerned equations are:

pn+1
x = pnx − κq.vz.By

ds

v
+ Fx

ds

v
= pnx − κq.cos(θ).Byds+ Fx

ds

v
(61)

pn+1
y = pny − κq.vz.Bx

ds

v
+ Fy

ds

v
= pny + κq.cos(θ).Bxds+ Fy

ds

v
(62)

pn+1
z = pnz−κq.(vxBy−vyBx).

ds

v
+Fz

ds

v
= pnz+κq.(txBy−tyBx).cos(θ).ds+Fz

ds

v
(63)

Writing cos(θ).ds = dz , we get,

pn+1
x = pnx − κq.Bydz + Fx.

ds

v
(64)

pn+1
y = pny + κq.Bxdz + Fy.

ds

v
(65)
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pn+1
z = pny + κq.(txBy − tyBx).dz + Fz.

ds

v
(66)

Now, the dissipative force comes from the Bethe-Block Energy loss dE
ds and

should be given by dE
ds .v̂ i.e. Fi =

dE
ds .

pi

p
So,

Fi
ds

v
=
dE

ds
.
pi
p
.
ds

βc
=
∂E

∂i

E

pc2
pi
p
ds =

∂E

∂i

1

β

pi
p
ρdz (67)

& hence

pn+1
x = pnx − κq.Bydz +

∂E

∂x

1

β

px
p
ρdz (68)

pn+1
y = pny + κq.Bxdz +

∂E

∂y

1

β

py
p
ρdz (69)

pn+1
z = pny + κq.(txBy − tyBx).dz +

∂E

∂z

1

β

pz
p
ρdz (70)

Now,

∂( qp )
(n+1)

∂t
(n)
i

= − q

{p(n+1)}2
.
∂p(n+1)

∂t
(n)
i

= − q

{p(n+1)}2
∂

∂t
(n)
i

[√
{p(n+1)

x }2 + {p(n+1)
y }2 + {p(n+1)

z }2
]

= − q

{p(n+1)}3

[
p(n+1)
x

∂p
(n+1)
x

∂t
(n)
i

+ p(n+1)
y

∂p
(n+1)
y

∂t
(n)
i

+ p(n+1)
z

∂p
(n+1)
z

∂t
(n)
i

]
(71)

&

∂( qp )
(n+1)

∂( qp )
(n)

=

(
p(n)

p(n+1)

)2
∂p(n+1)

∂p(n)
=

(
p(n)

p(n+1)

)
.

1

p(n+1)
.

[
p(n+1)
x

∂p
(n+1)
x

∂p(n)
+ p(n+1)

y

∂p
(n+1)
y

∂p(n)
+ p(n+1)

z

∂p
(n+1)
z

∂p(n)

]
(72)

Using expressions for p
(n+1)
i in terms of p

(n)
i , we get:

∂( qp )
(n+1)

∂t
(n)
i

= − q

{p(n+1)}3
[

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

}
∂

∂t
(n)
i

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

}

+

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

}
∂

∂t
(n)
i

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

}
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+

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}
∂

∂t
(n)
i

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}
]

(73)
&

∂( qp )
(n+1)

∂( qp )
(n)

=

(
p(n)

p(n+1)

)2
∂p(n+1)

∂p(n)
=

(
p(n)

p(n+1)

)
.

1

p(n+1)
.

[
p(n+1)
x

∂p
(n+1)
x

∂p(n)
+ p(n+1)

y

∂p
(n+1)
y

∂p(n)
+ p(n+1)

z

∂p
(n+1)
z

∂p(n)

]

=
{p(n)}2

{p(n)}3
[

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

}
∂

∂p(n)

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

}

+

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

}
∂

∂p(n)

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

}

+

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}
∂

∂t
(n)
i

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}
]

(74)
Writing pi = p. ti√

1+t2x+t2y
,we get

∂( qp )
(n+1)

∂t
(n)
x

= − q

{p(n+1)}3
×

[

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

} p(n)√
1 + {t(n)x }2 + {t(n)y }2

+
∂E

∂x
.
ρ

β
dz − p(n)t(n)x

t
(n)
x

[1 + {t(n)x }2 + {t(n)y }2]
3
2



+

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

}{
−p(n)t(n)y

t
(n)
x

[1 + {t(n)x }2 + {t(n)y }2]
3
2

}

+

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}{
−p(n) t

(n)
x

[1 + {t(n)x }2 + {t(n)y }2]
3
2

+ κqBydz

}
]

(75)

∂( qp )
(n+1)

∂t
(n)
y

= − q

{p(n+1)}3
[

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

}{
−p(n)t(n)x

t
(n)
y

[1 + {t(n)x }2 + {t(n)y }2]
3
2

}
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+

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

} p(n)√
1 + {t(n)x }2 + {t(n)y }2

+
∂E

∂y
.
ρ

β
dz − p(n)t(n)y

t
(n)
y

[1 + {t(n)x }2 + {t(n)y }2]
3
2



+

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

}{
−p(n) t

(n)
y

[1 + {t(n)x }2 + {t(n)y }2]
3
2

− κqBydz

}
]

(76)

∂( qp )
(n+1)

∂( qp )
(n)

=

{
p(n)

p(n+1)

}2

[

{
p(n)x − κqBydz +

∂E

∂x

1

β

px
p
ρdz

} t
(n)
x√

1 + {t(n)x }2 + {t(n)y }2
+ t(n)x

∂

∂p(n)

[
1

β

∂E

∂x

]
ρdz



+

{
p(n)y + κqBydz +

∂E

∂y

1

β

py
p
ρdz

} t
(n)
y√

1 + {t(n)x }2 + {t(n)y }2
+ t(n)y

∂

∂p(n)

[
1

β

∂E

∂y

]
ρdz



+

{
p(n)z + κq

(
t(n)x By − t(n)y Bx

)
dz +

∂E

∂z

1

β

pz
p
ρdz

} 1√
1 + {t(n)x }2 + {t(n)y }2

+
∂

∂p(n)

[
1

β

∂E

∂z

]
ρdz

]

(77)
Apparently these equations are okay to give the correct last row entries for

the propagator matrix, however that is yet to check.
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