

*MESUREMENT OF MUON LIFETIME
USING COSMIC MUON STOPPED IN PLASTIC SCINTILLATOR DETECTOR.*

ASMITA REDIJ

SCIENTIFIC OFFICER.

AS A PART OF EXPERIMENTAL PHYSICS COURSE (I).

CONDUCTED FOR INO TRAINING SCHOOL .

UNDER THE GUIDANCE OF

DR. SATYANARAYANA BHEESETTE &

MR. L.V. REDDY

Abstract :

Aim of this experiment is to measure lifetime of muon using cosmic ray muon. Muon produced on the interaction of cosmic ray particle with atmospheric nucleus travel through atmosphere to reaches the surface of earth. Muons which pass through the scintillation detector interact with matter in the detector, to loss all its energy by ionization and excitation of molecules in it and decay off giving two consecutive gamma rays signal, first by the slowed down muon and second on its subsequent decays. Time difference (t) between these two signals follow exponential distribution given by function $N = N_0 \exp(-t/\tau)$, where lifetime τ is defined as time in which N_0/e particle decay. Data taken for 96hrs was analyzed to get lifetime of muon $2.17 +0.02$ microseconds.

Content

INTRODUCTION

- Muon
- Source of muon
- Muon Decay
- Test of Relativistic Time dialation

EXPERIMENTAL SETUP

- Detector Setup
- Plastic Scintillator
- Detection Mechanism
- Time measurement circuit

DATA ANALYSIS

- Lifetime of muon
- Fermi Constant

CONCLUSION

APPENDIX

ACKNOLEGEMENT

REFERENCES

INTRODUCTION

Muon

Muon was first discovered in 1936 while studying cosmic radiation, by Carl D. Anderson and Seth Neddermeyer at Caltech. Later in 1937 J. C. Street and E. C. Stevenson's cloud chamber experiment confirmed the existence of muon. As an electron it is a spin half negatively charged particle with mass 200 times that of an electron. It was finally resolved to be a fundamental particle belonging to the family of leptons as per the standard model of particles.

In this experiment we intent to measure the lifetime of cosmic ray muon stopped

Source of muon

The only natural source producing muon is the cosmic ray. Neither any radioactive decay nor nuclear fission is capable of producing such a large rest mass energy required for muon production. Cosmic ray particle reaching upper layer of the Earth's atmosphere interact with atmospheric nuclei to produce pion. These pions decay to muons, which then penetrates through the atmosphere.

$$\pi^+ \rightarrow \mu^+ + \nu_\mu \quad \pi^- \rightarrow \mu^- + \bar{\nu}_\mu$$

Muon because of its larger mass is not sharply accelerated and so do not lose by bremsstrahlung as an electron. Hence muon can penetrate over long distance. Muons lose energy at a constant rate of about 2 MeV per g/cm². Taking the vertical depth of the atmosphere to be about 1000 g/cm², muons will lose about 2 GeV to ionization before reaching the ground. The mean energy of muons at sea level is still 4 GeV. Therefore the mean energy at creation is probably about 6 GeV. Average flux of muon at sea level is about 1 muon /sq cm/ minute.

Muon Decay

Muon is an unstable particle and decays via weak interaction. Both muon and antimuon dominantly decay through

$$\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu, \quad \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

Muon(μ^-) also disappear due to its capture by a nucleus by weak interaction. The probability of this capture is proportional to Z^4 . Where μ^+ is strongly repelled by the nucleus, so they only undergo spontaneous decay. Though the lifetime of free muon and free antimuon is same, for muon the measured mean lifetime in matter is lesser and becomes shorter with increasing Z of the material.

The number of muon that survive at time t , $N(t)$ given by

$$N(t) = N_0 \exp(-t/\tau)$$

Where, N_0 is number of muon at time $t=0$

τ is mean lifetime of muon.

Thus the distribution of decay of unstable particle falls off exponentially with time. The mean lifetime of the particle is the time required to reduce the initial number of particles by a factor of $1/e$ as measured in rest frame. Mean lifetime of free muon is 2.19703 ± 0.0004 microsecond. This exponential distribution of muon decay time makes it makes no difference where we start our $t=0$ from.

Test for Relativistic Time Dilation

Range of muon traversing with the speed of light, with the mean lifetime of 2.197 micro-second would be only 660 m. However, at relativistic speeds, the lifetime of the muon, as perceived in lab frame is much longer. Given a minimal 2 GeV muon (rest mass = 0.1 GeV):

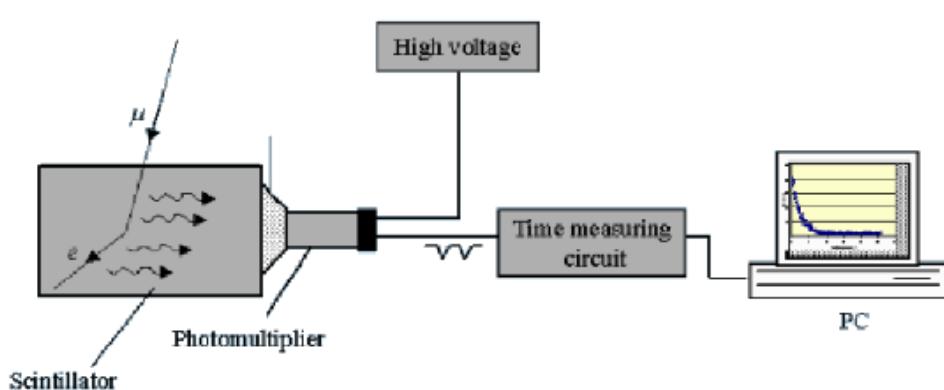
Kinetic energy is given by

$$K = \gamma mc^2 - mc^2$$

Where, $\gamma = (\sqrt{1 - u^2/c^2})$, u = relative velocity.

m is the rest mass energy.

$$\gamma = (K + mc^2)/mc^2 = (2+0.1)\text{GeV}/0.1\text{GeV} = 21$$


Using time dilation: $\Delta t = 21 * 2.197 * 10^{-6} \text{ s} = 4.6 * 10^{-5} \text{ s}$

$$\text{Range } x = ct \quad x = (3.0 * 10^8 \text{ m/s}) * (4.6 * 10^{-5} \text{ s}) = 13860 \text{ m}$$

Detection of muon at sea level give evidence of time dilation predicted by special relativity.

EXPERIMENTAL SETUP

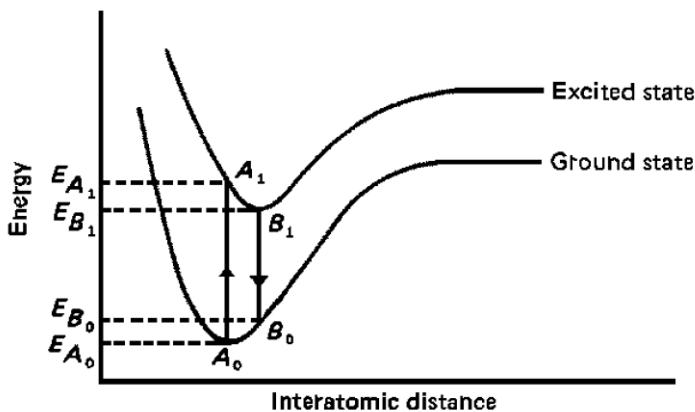
The Setup consists of Bicron-404 plastic scintillator of dimension 24cm x24cm x 14.5cm, wrapped with 'Tyvec' paper with high reflectivity and for refocusing of scintillation produced and then with 'Tedral' paper to prevent ambient light from entering the detector. Scintillator slows down and stops the muon passing through it.

Block Diagram of Experimental setup

A Photomultiplier tube to pick up scintillation emitted when muon interacts with plastic scintillator and to convert this light signal into electric signal. A time measuring circuit to measure the time interval between two consecutive trigger.

Plastic Scintillator

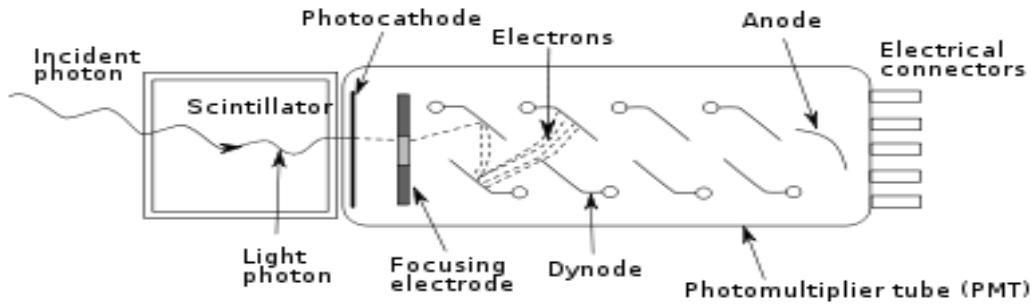
Because of its good sensitivity, linear response to energy fast response and pulse shape discrimination, scintillation detector is the most widely used particle detector today.


A good scintillation detector must also have:

- 1) High efficiency for conversion of excitation energy to fluorescent radiation.
- 2) Transparency to its fluorescent radiation so as to allow transmission of the light.
- 3) Emission in the spectral range consistent with the spectral response of the existing photomultipliers.

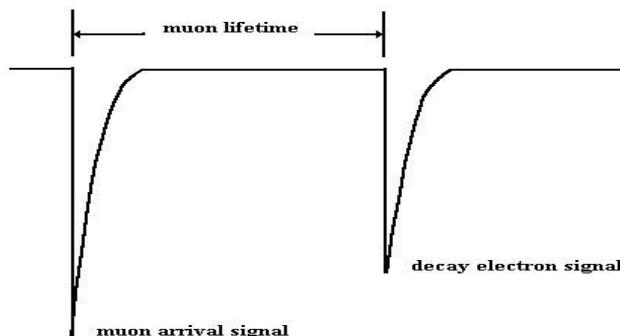
4) Short decay constant τ .

Plastic scintillators are solutions of organic scintillator with solid plastic solvent. Organic scintillators are aromatic hydrocarbon compound containing linked or condensed benzene-ring structures. When a charged particle passes through them the molecules in it are excited which de-excite emitting a photon.


We used plastic scintillator from Bicron BC-404, Premim plastic scintillator, with Polyvinyltoluene base, Density 1.032 g/cc and refractive index 1.58. In Fluorescence the initial excitation take place via the adsorption of photon and de-excitation by emission of a longer wavelength photon. Fluors are used as ‘wavelength shifters’ to shift scintillation light to a longer wavelength photon.

Scintillation mechanism

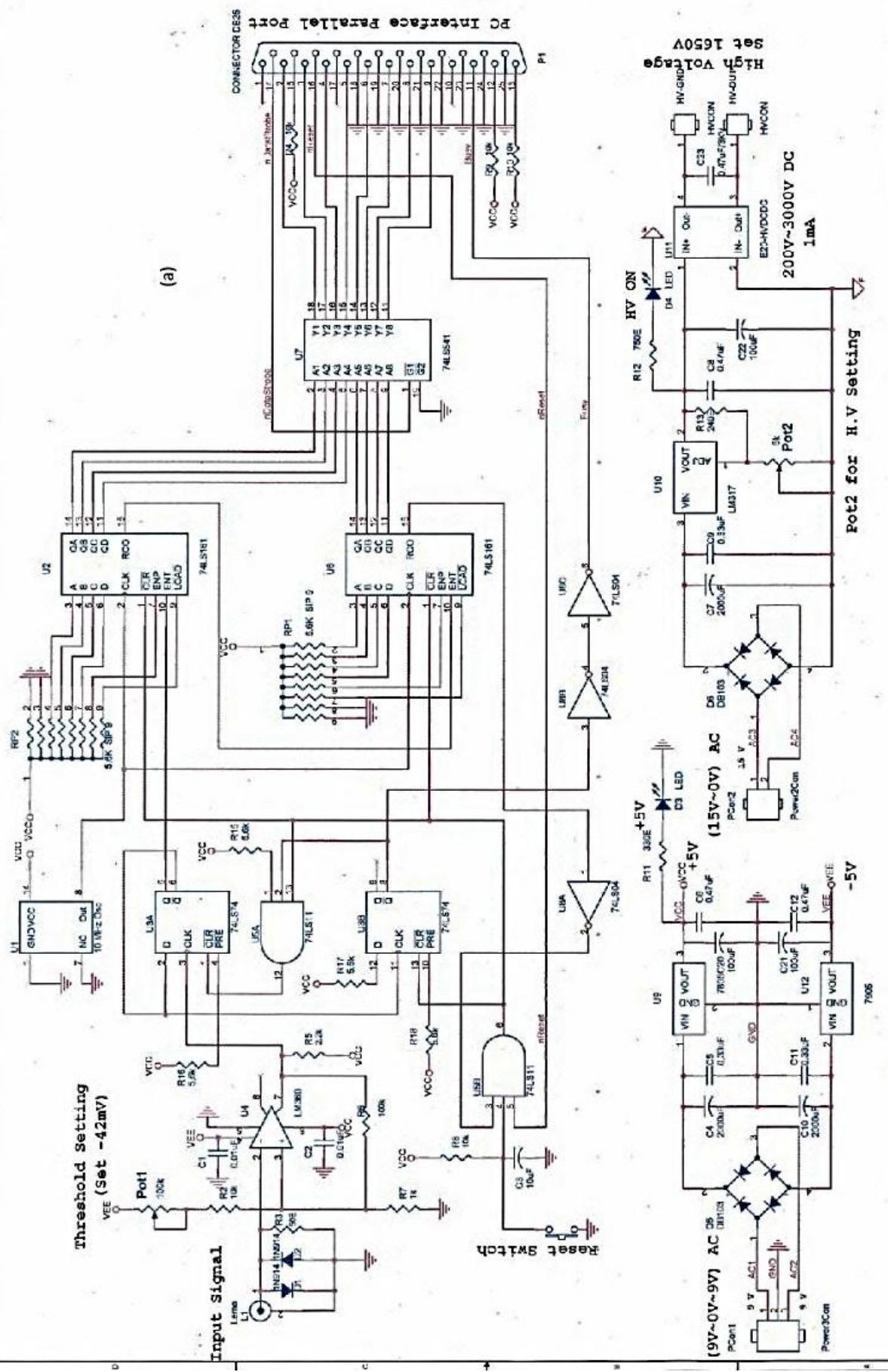
Photo Multiplier tube


Photomultiplier tube is used to convert the light output from the scintillator to an electric signal. We used 21 pin 2" diameter PMT semitransparent bialkali photocathode. The biasing voltage required of about 1.8 kV. It is generated by means of a high voltage dc to dc converter (E20 – HVDCDC). The circuit is as shown in Figure Its (PMT's) biasing circuit receives AC input from a common step-down transformer which is connected to the general power supply (230 V, 50 Hz AC). The transformer gives input to both time measuring circuit and PMT biasing circuit.

Schematic of PMT

Detection Mechanism

For the measurement of muon life time we need to record the muon that enter the scintillator, slow down to stop and decay in the scintillator. As the muon slows down, losing it energy via ionization and by atomic excitation of solvent molecules. The excited scintillator molecules emit photon during de-excitation. These photons are seen by PMT and converted into an amplified electronic pulse. If this pulse amplitude is above threshold, a start trigger is sent to Timing circuit. Meanwhile the stopped muon after a short while decays into electron, neutrino and antineutrino. Neutrino and antineutrino take away small fraction of energy but escape through the detector unidentified. Electron takes away rest of the energy. Electron mass being much smaller than muon mass electrons emitter with sufficiently higher kinetic energy to produce scintillation. This second burst of scintillation produced is seen by the PMT and second trigger pulse is sent to the timing clock. The timing counter is stopped on receiving the second pulse. Timing between these consecutive signal is recorded as decay time of the detected muon.


Scintillation Signature of stopped muon 1

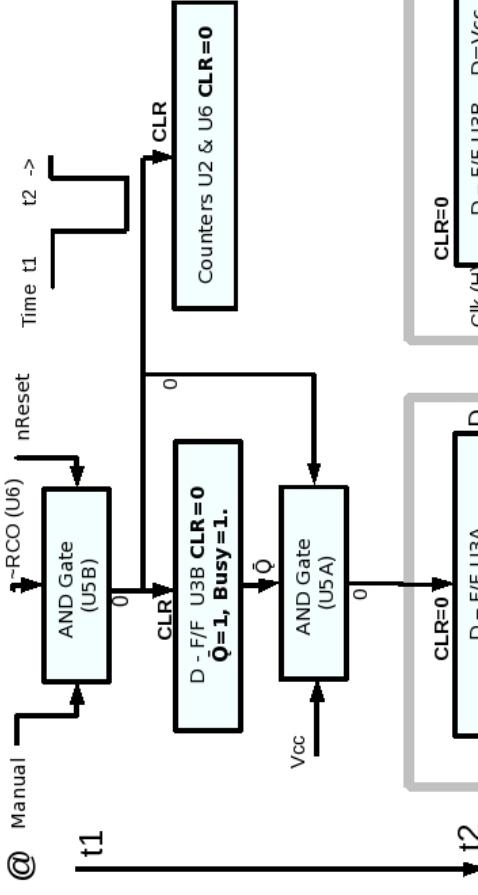
Time measuring circuit

Time measuring circuit is an electronic backend of the experimental setup interfaced with PC meant for measuring the time interval between the two consecutive trigger pulse marking the entry and decay of muons. It is interfaced with PC to so to record the data. On receiving the first trigger from the PMT the time measuring circuit, which ready to accept the trigger starts the counter. Counting is done by two cascaded 4 bit counter driven by clock of 10 MHz oscillator. On receiving the second trigger for PMT the circuit stops counting. If the second trigger is not received in 255 micro seconds. The circuit is reset and ready to receive next muon trigger.

Following two pages show

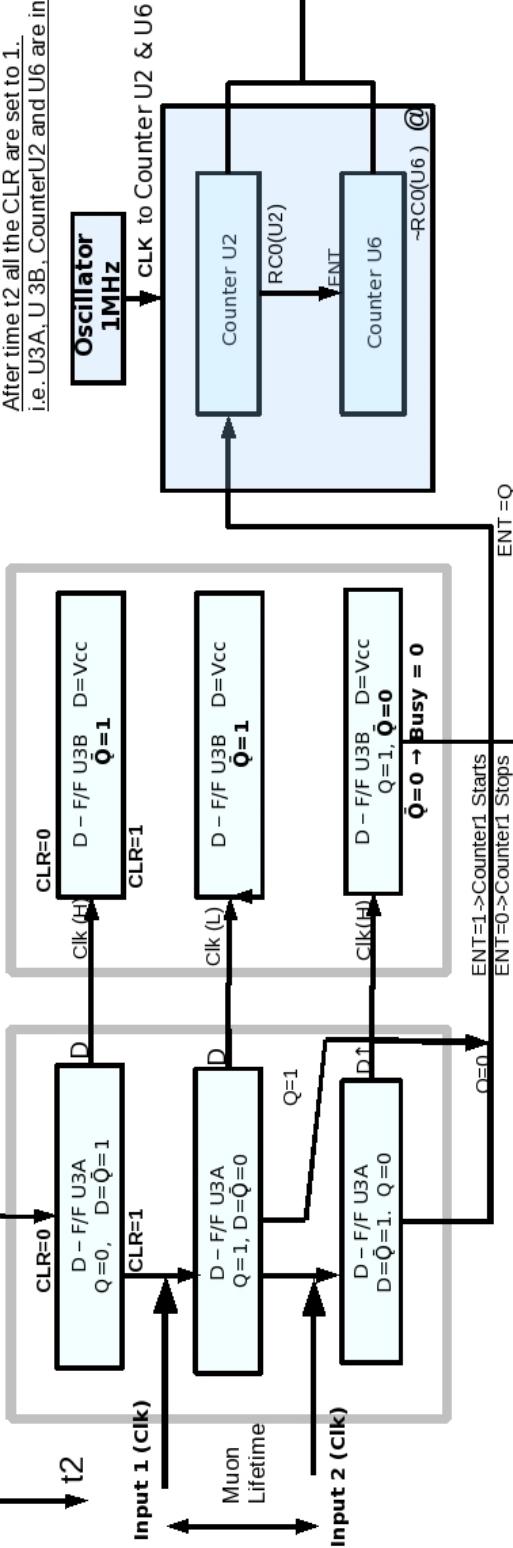
- 1) Timing circuit diagram.
- 2) Flow chart to explain the working of Timing circuit.

(b)


(c)

Widgit Lite Guide

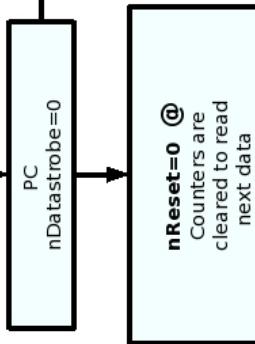
Wednesday, November 10, 2004


The system is reset if negative pulse send to any 1 of foll.

Truth table for D FlipFlop				
Pre	Clr	D	Q	Q*
1	0	D	0	1
0	1	D	1	0
1	1	1	1	0
1	1	0	0	1

This AND gate will set some delay between the clear and clk pulse at U3A

After time $t2$ all the CLR are set to 1.
i.e. U3A, U3B, CounterU2 and U6 are in active state.


Input 1 & Input 2 are two consecutive pulse recorded by PMT.

Threshold 42mV set using Discriminator.
Input 1 → when Muon enters the detector.

Input 2 → On Decay of muon.

clock pulse.
If Input 2 not received RCO (U6) set to 1, $\neg(RCO(U6)) \rightarrow U5B$.

Read data. On η DataStrobe=0, Buffer is latched and Data is read from the buffer.

nReset=0 @
Counters are
cleared to read
next data

FUNCTION	IC		
Comparator	LM360 (8 pins)	AND gate	74LS11 (14 pins)
D-Flip Flop	74LS74 (14 pins)	NOT gate	74LS04 (14 pins)
4-bit counter	74LS161 (16 pins)	Positive voltage regulator	7805 (3 pins)
Buffer	74LS541 (20 pins)	Negative voltage regulator	7905 (3 pins)
		Bridge rectifier	DB103 (4 pins)

DATA ANALYSIS

Measurement of muon lifetime

The experiment was run for 96hrs. The muon decay time for every stopped event was recorded. The muon decay time obtained for all the events were binned. The histogram was then fitted with the function

$$N(t) = N_0 \exp(-t/\tau) + b \text{ where } \tau \text{ is the lifetime of muon}$$

b correspond to background

Background

The detector responds to all type of particle which can produce scintillation in the detector. There is no way to distinguish between the through going and stopped muons which decay. So the two consecutive muons can also leave a record. But these time intervals will be uncorrelated and random. Background can be eliminated by selecting appropriate time interval and background level can be identified by looking at large time interval where less muon events are expected.

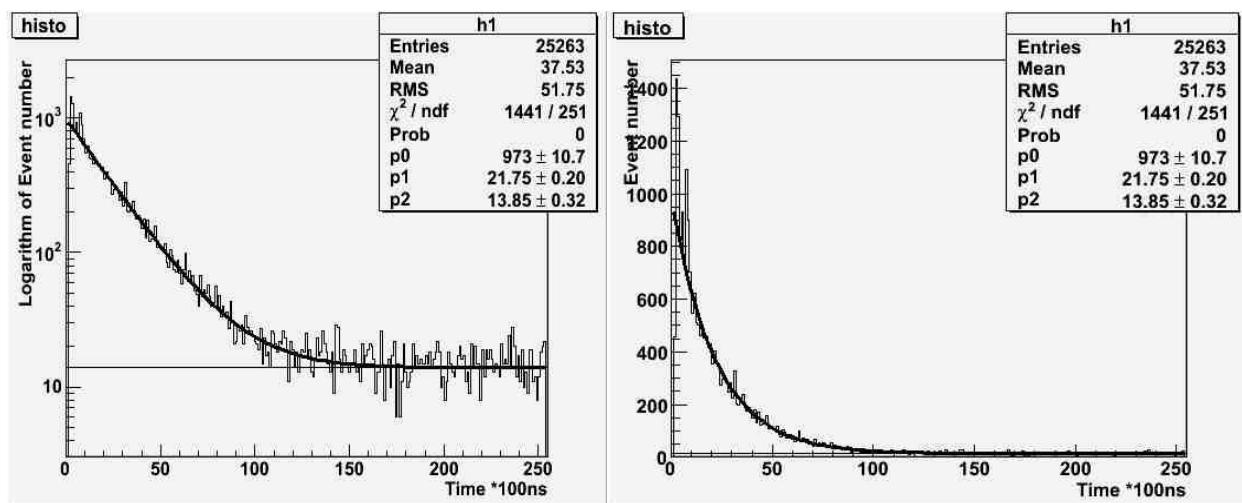


Figure 1 Muon Decay time histogram

Figure 2 Muon Decay time histogram(semi log)

Value of the fit parameter,

$$N_0 = 973 \pm 10.7$$

$$\tau = 2.175 \pm 0.020 \text{ s}$$

$$b = 13.85 \pm 0.32$$

The mean lifetime of muon is observed to be 2.175 ± 0.020 s

Fermi constant

Fermi coupling constant G_F gives the strength of Fermi's interaction. The most precise experimental determination of the Fermi constant comes from measurements of the muon lifetime, which is inversely proportional to the square of G_F given as

$$G_F^2 = 192 \pi^3 / \tau m_\mu^5$$

$$G_F = 1.1696 \times 10^{-5} \text{ GeV}^{-2}$$

CONCLUSION

The mean lifetime of the muon was measured to be 2.175 micro second. Measured muon lifetime has an error of 1% from the free muon lifetime of $2.197 \mu\text{s}$. This difference is due to the nuclear capture of muon.

APPENDIX

Datasheet 2" 9807B series

Datasheet Bicron BC-404 Premium Plastic Scintillator

51 mm (2") photomultiplier

9807B series data sheet

1 description

The 9807B is a 51 mm (2") diameter, end window photomultiplier with blue-green sensitive bialkali photocathode and 12 high gain, high stability, BeCu dynodes of linear focused design for good linearity and timing. It is a plug-in replacement for the RCA 8575 and has a 21 pin base.

2 applications

- high energy physics studies

3 features

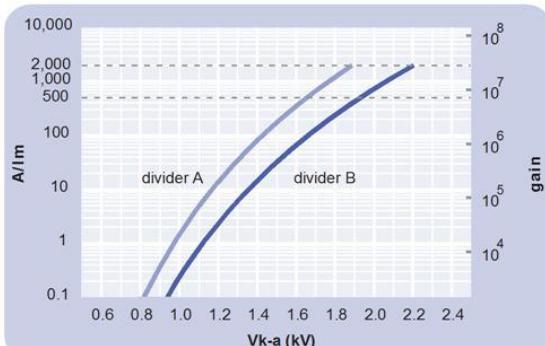
- good SER
- high pulsed linearity

4 window characteristics

9807B borosilicate	
spectral range** (nm)	290 - 630
refractive index (n_d)	1.49
K (ppm)	300
Th (ppb)	250
U (ppb)	100

*note that the sidewall of the envelope contains graded seals of high K content
** wavelength range over which quantum efficiency exceeds 1 % of peak

5 typical spectral response curves



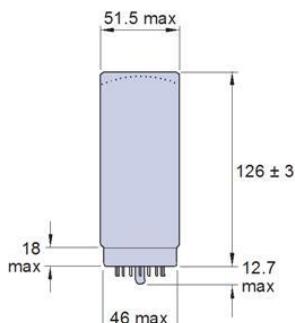
6 characteristics

	unit	min	typ	max
photocathode: bialkali				
active diameter	mm		46	
quantum efficiency at peak	%	30		
luminous sensitivity	$\mu\text{A/lm}$	70		
with CB filter		8	11.5	
with CR filter			2	
dynodes: 12LFBeCu				
anode sensitivity in divider A:				
nominal anode sensitivity	A/lm		500	
max. rated anode sensitivity	A/lm		2000	
overall V for nominal A/lm	V		1650	
overall V for max. rated A/lm	V		1900	2300
gain at nominal A/lm	$\times 10^6$		7	
dark current at 20 °C:				
dc at nominal A/lm	nA		3	20
dc at max. rated A/lm	nA		20	
dark count rate	s^{-1}		300	
pulsed linearity (-5% deviation):				
divider A	mA		50	
divider B	mA		150	
pulse height resolution:				
single electron peak to valley	ratio		2	
rate effect (I_a for $\Delta g/g=1\%$):	μA		1	
magnetic field sensitivity:				
the field for which the output				
decreases by 50 %				
most sensitive direction	$\text{T} \times 10^{-4}$		1	
temperature coefficient:	$\% \text{ }^{\circ}\text{C}^{-1}$		± 0.5	
timing:				
single electron rise time	ns		2	
single electron fwhm	ns		3	
single electron jitter (fwhm)	ns		2.2	
multi electron rise time	ns		3.2	
multi electron fwhm	ns		4.5	
transit time	ns		41	
weight:	g		150	
maximum ratings:				
anode current	μA		100	
cathode current	nA		100	
gain	$\times 10^6$		30	
sensitivity	A/lm		2000	
temperature	$^{\circ}\text{C}$	-30	60	
$V(k-a)^{(1)}$	V		2800	
$V(k-d1)$	V		500	
$V(d-d)^{(2)}$	V		450	
ambient pressure (absolute)	kPa		202	

⁽¹⁾ subject to not exceeding max. rated sensitivity ⁽²⁾ subject to not exceeding max rated $V(k-a)$

7 typical voltage gain characteristics

8 voltage divider distribution


K	d ₁	d ₂	d ₉	d ₁₀	d ₁₁	d ₁₂	a
A	300V	R	R	R	R	R	R
B	300V	R	R	1.25R	1.5R	2R	3R

Standard
High Pulsed
Linearity

note: focus connected to d₁.

Characteristics contained in this data sheet refer to divider A unless stated otherwise.

9 external dimensions mm

10 base configuration (viewed from below)

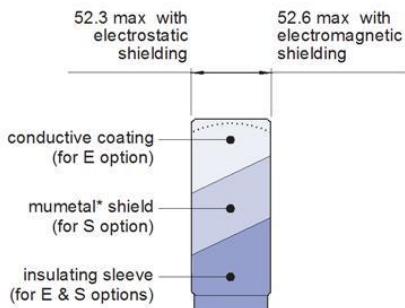
'ic' indicates an internal connection

note: connect f to d₁

Our range of B21 sockets, available for this series, includes versions with or without a mounting flange, and versions with contacts for mounting directly onto printed circuit boards.

11 ordering information

The 9807B meets the specification given in this data sheet. You may order **variants** by adding a suffix to the type number. You may also order **options** by adding a suffix to the type number. You may order product with **specification options** by discussing your requirements with us. If your selection option is for one-off order, then the product will be referred to as 9807A. For a repeat order, **ET Enterprises** will give the product a two digit suffix after the letter B, for example B21. This identifies your specific requirement.


9807

options

- E** electrostatic shielding
see drawing below
- S** electromagnetic shielding
see drawing below
- M** supplied with spectral response calibration

specification options

- B** as given in data sheet
- A** single order to selected specification
- Bnn** repeat order to selected specification

12 voltage dividers

The standard voltage dividers available for these pmts are tabulated below:

K	d ₁	d ₂	d ₃	d ₈	d ₉	d ₁₀	d ₁₁	d ₁₂	a
C628A	3R	R	R	R	R	R	R	R	R
C628B	3R	R	R	R	1.25R	1.5R	2R	3R	
C628C	300 V	R	R	R	R	R	R	R	R
C628D	300 V	R	R	R	1.25R	1.5R	2R	3R	

note: focus connected to d₁

R = 330 kΩ

*mumetal is a registered trademark of Magnetic Shield Corporation

choose accessories for this pmt on our website

an ISO 9001 registered company

The company reserves the right to modify these designs and specifications without notice. Developmental devices are intended for evaluation and no obligation is assumed for future manufacture. While every effort is made to ensure accuracy of published information the company cannot be held responsible for errors or consequences arising therefrom.

ET Enterprises
electron-tubes

© ET Enterprises Ltd, 2010
DS_9807B Issue 6 (20/09/10)

BC-400/BC-404/BC-408/BC-412/BC-416

Premium Plastic Scintillators

General Description

The premium plastic scintillators described in this data sheet include the most economical (BC-416) as well as those with the highest light output.

General Technical Data

Base	Polyvinyltoluene
Density	1.032 g/cc
Refractive Index	1.58
Coefficient of Linear Expansion	7.8×10^{-5} , below 67°C
Atomic Ratio, H/C	~1.1
Light Output Temperature Dependence	At +60°C = 95% of that at +20°C; independent of temperature from -60°C to +20°C
Vapor Pressure	May be used in a vacuum
Solubility	Soluble in aromatic solvents, chlorine, acetone, etc. Insoluble in water, dilute acids, lower alcohols, silicone fluid, grease and alkalis.

Radiation Detected	Scintillator
< 100 keV X-rays	BC-404
100 keV to 5 MeV gamma rays	BC-408
>5 MeV gamma rays	BC-400 BC-416
Fast neutrons	BC-408 BC-412
Alphas, betas	BC-400 BC-404
Charged particles, cosmic rays, muons, protons, etc.	BC-408 BC-412 BC-416

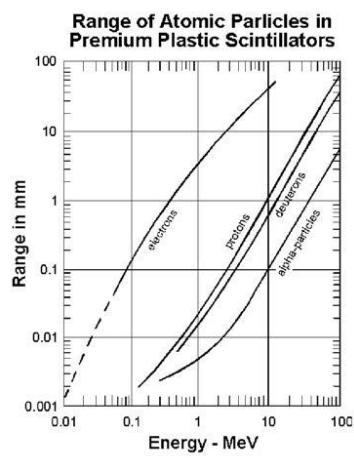
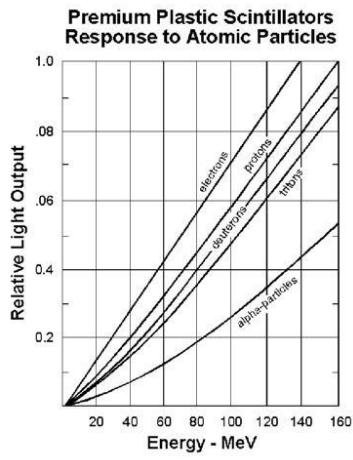
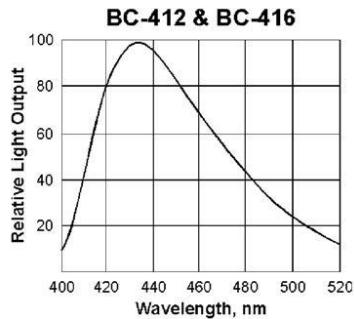
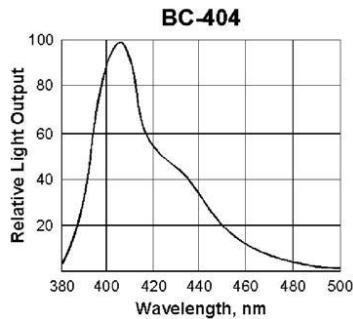
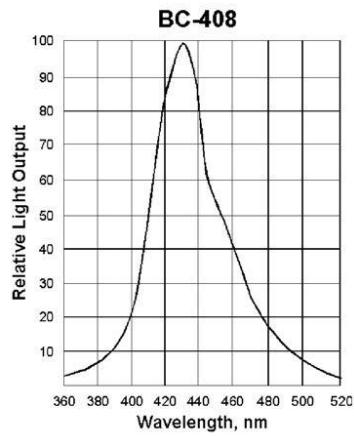
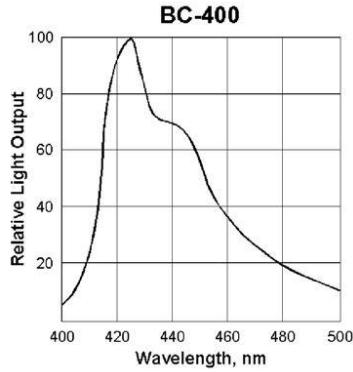
Properties	BC-400	BC-404	BC-408	BC-412	BC-416
Light Output, % Anthracene	65	68	64	60	38
Rise Time, ns	0.9	0.7	0.9	1.0	—
Decay Time, ns	2.4	1.8	2.1	3.3	4.0
Pulse Width, FWHM, ns	2.7	2.2	~2.5	4.2	5.3
Light Attenuation Length, cm*	160	140	210	210	210
Wavelength of Max. Emission, nm	423	408	425	434	434
No. of H Atoms per cm ³ , (x10 ²²)	5.23	5.21	5.23	5.23	5.25
No. of C Atoms per cm ³ , (x10 ²²)	4.74	4.74	4.74	4.74	4.73
Ratio H:C Atoms	1.103	1.100	1.104	1.104	1.110
No. of Electrons per cm ³ , (x10 ²³)	3.37	3.37	3.37	3.37	3.37
Principal uses/applications	general purpose	fast counting	TOF counters, large area	large area	large area economy

*The typical 1/e attenuation length of a 1 x 20 x 200 cm cast sheet with edges polished as measured with a bialkali photomultiplier tube coupled to one end

(continued over)

Saint-Gobain Industrial Ceramics, Inc.

BICRON • 12345 Kinsman Road • Newbury, Ohio 44065 USA
Phone: (440) 564-2251 • Fax: (440) 564-8047 • Internet: <http://www.bicron.com>
Bicron FaxBack Information Access System: (800) 892-8708







European Office • P.O. Box 3093, 3760 DB Soest, The Netherlands
Phone: (31) 35 60 29 700 • Fax: (31) 35 60 29 214

Nippon Bicron • 8F Shinyokohama Station Building, 2-6-13 Shinyokohama
Kohoku-ku, Yokohama 222 Japan • Phone: (81) 45.474.5786 • Fax: (81) 45.474.5787

BC-400/BC-404/BC-408/BC-412/BC-416 Premium Plastic Scintillators

(continued from first page)

Emission Spectra

References:

- “Technique for nuclear physics and particle physics experiment.” W.R. Leo.
- “Muon lifetime measurement” Dr F.Muheim.
- “Muon Physics” T.Coan and J. Ye.
- “Precision lifetime measurements on Positive and negative muons” S.L Meyer et. al
- T. Suzuki, Total nuclear capture reats for negative muons, Physical Review C35 (1987) 2212.

Acknowledgements:

Prof. Naba Mondal

Prof. B.S. Acharya

Dr. B. Satyanarayan

R. R. Shinde

My colleagues and co-students