Physics reach of CERN – INO baseline with Beta Beam

Sanjib Kumar Agarwalla

Harish-Chandra Research Institute, Allahabad, India

work done in collaboration with

Amitava Raychaudhuri

Plan

- Beta beam
- India-based Neutrino Observatory (INO)
- Neutrino oscillations with matter effect
- Probing neutrino parameters with a long baseline experiment
- Results
- Performance of β beam at different baselines
- θ_{13} , δ degeneracy
- Conclusions

Beta Beam

• A pure, intense, collimated beam of ν_e or $\bar{\nu}_e$, essentially background free.

• Produced through the beta decay of radioactive ions circulating in a storage ring.

Novelties of a Beta Beam

- ⇒ known energy spectrum, high intensity, low systematic errors
- ⇒ neutrino isotropically emitted in rest frame of spinless parent ion
- \Rightarrow Lorentz boost of the parent ions \rightarrow strong collimation,
- $\Rightarrow\,$ can be produced with existing CERN facilities. "High" $\gamma\,$ option ($\gamma \geq$ 1500) accessible in the LHC era

Figure 1: The beta beam complex based on CERN facilities in the low- γ configuration.

Beta Beam (contd.)

• The ν_e ($\bar{\nu}_e$) beams are produced via the β decay of accelerated and completely ionized ${}^{18}Ne$ (${}^{6}He$) ions.

•
$${}^{18}_{10}Ne \to {}^{18}_9F + e^+ + \nu_e$$
.

•
$${}_{2}^{6}He \rightarrow {}_{3}^{6}Li + e^{-} + \bar{\nu}_{e}$$
.

Beta Beam (contd.)

- The ν_e ($\bar{\nu}_e$) beams are produced via the β decay of accelerated and completely ionized ${}^{18}Ne$ (${}^{6}He$) ions.
- ${}^{18}_{10}Ne \to {}^{18}_{9}F + e^+ + \nu_e$.
- ${}^6_2He \rightarrow {}^6_3Li + e^- + \bar{\nu}_e$.
- Both beams can run simultaneously in the storage ring which requires: $\gamma (Ne^{18}) = 1.67 \cdot \gamma (He^{6})$.
- Low- γ design, useful decays in case of anti-neutrinos can be 2.9×10^{18} /year and for neutrinos 1.1×10^{18} /year.
- The $\nu_e/\bar{\nu}_e$ flux is obtained from standard beta decay calculation.

INO

The India-based Neutrino Observatory

⇒ a magnetized Iron calorimeter (ICAL) detector with excellent efficiency of charge identification (\sim 95%) and good energy determination

INO

The India-based Neutrino Observatory

- ⇒ a magnetized Iron calorimeter (ICAL) detector with excellent efficiency of charge identification (\sim 95%) and good energy determination
- ⇒ preferred location is Singara (PUSHEP) in the Nilgiris (L = 7177 km)
- \Rightarrow a 50 Kiloton Iron detector
- \Rightarrow signal is the muon track ($\nu_e \rightarrow \nu_\mu$ channel)
- \Rightarrow energy threshold is around 800 MeV

ICAL

Figure 2: Schematic plan of the 32 kTon ICAL detector for INO.

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006

ν_e Spectrum

Figure 3: Boosted spectrum of neutrinos and anti-neutrinos at the far detector assuming no oscillation. The flux is given in units of $yr^{-1}m^{-2}MeV^{-1}$.

Three-flavour oscillations

- ⇒ Neutrino parameters: neutrino mass eigenvalues and the PMNS mixing matrix
- ⇒ neutrino flavour states $|\nu_{\alpha}\rangle$ ($\alpha = e, \mu, \tau$) are linear superpositions of the mass eigenstates $|\nu_i\rangle$ (i = 1, 2, 3) with masses m_i

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$$

 $\Rightarrow U \equiv 3 \times 3$ unitary matrix (PMNS) parametrized as:

$$U = V_{23} W_{13} V_{12}$$

Three-flavour oscillations (contd.)

where

$$V_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, W_{13} = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix},$$

$$V_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}.$$

 $\Rightarrow c_{12} = \cos \theta_{12}, s_{12} = \sin \theta_{12}$ etc.

 $\Rightarrow \delta$ denotes the CP-violating (Dirac) phase

(Majorana phases ignored)

Three-flavour oscillations (contd.)

The probability that an initial ν_f of energy *E* gets converted to a ν_g after traveling a distance *L* in vacuum

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{j>i} \operatorname{Re}(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 \frac{L}{E})$$

$$\pm 2 \sum_{j>i} \operatorname{Im}(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 \frac{L}{E})$$

L is expressed in km, *E* in GeV and Δm^2 in eV². The – (+) refers to neutrinos (anti-neutrinos). Т

Matter effects

Probabilites in matter

 \Rightarrow Interactions in matter modify the oscillation probability

Matter effects

Probabilites in matter

- \Rightarrow Interactions in matter modify the oscillation probability
- \Rightarrow the 3-flavour neutrino evolution equation in matter :

$$\begin{split} i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \\ \begin{bmatrix} \frac{1}{2E}U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} V_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \end{split}$$

- $V_{CC} = \sqrt{2}G_F n_e$ (matter-induced potential)
- n_e is the electron number density

Neutrino mixing

- ⇒ atmospheric neutrinos reveal the best-fit values with 3σ error : $|\Delta m_{23}^2| \simeq 2.12^{+1.09}_{-0.81} \times 10^{-3} \text{ eV}^2$, $\theta_{23} \simeq 45.0^{\circ}_{-9.33^{\circ}}$
- $\Rightarrow \text{ the same for solar neutrinos : } \Delta m_{12}^2 \simeq 7.9^{+1.0}_{-0.8} \times 10^{-5}$ $eV^2, \theta_{12} \simeq 33.21^{\circ} {}^{+4.85^{\circ}}_{-4.55^{\circ}}$ $(\text{our convention : } \Delta m_{ij}^2 = m_j^2 m_i^2)$

Neutrino mixing

- ⇒ atmospheric neutrinos reveal the best-fit values with 3σ error : $|\Delta m_{23}^2| \simeq 2.12^{+1.09}_{-0.81} \times 10^{-3} \text{ eV}^2$, $\theta_{23} \simeq 45.0^{\circ}_{-9.33^{\circ}}$
- $\Rightarrow \text{ the same for solar neutrinos : } \Delta m_{12}^2 \simeq 7.9^{+1.0}_{-0.8} \times 10^{-5}$ $eV^2, \theta_{12} \simeq 33.21^{\circ} {}^{+4.85^{\circ}}_{-4.55^{\circ}}$ $(\text{our convention : } \Delta m_{ij}^2 = m_j^2 m_i^2)$
- ⇒ current bound on CHOOZ mixing angle θ_{13} from the global oscillation analysis : $\sin^2 \theta_{13} < 0.05$ (3 σ)
- ⇒ two large mixing angles and the relative oscillation frequencies open the possibility to test CP violation in the neutrino sector, if θ_{13} and δ are not vanishingly small

HIERARCHY

Figure 4: Schematic view of the hierarchy.

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006

Neutrino mixing (contd.)

Unsolved issues

- \Rightarrow The sign of Δm^2_{23} is not known. Neutrino mass spectrum can be direct or inverted hierarchical
- \Rightarrow Only an upper limit on θ_{13} . The CP phase, δ , is unconstrained

Neutrino mixing (contd.)

Unsolved issues

- \Rightarrow The sign of Δm^2_{23} is not known. Neutrino mass spectrum can be direct or inverted hierarchical
- \Rightarrow Only an upper limit on θ_{13} . The CP phase, δ , is unconstrained

$\mathbf{Our\ goal} \rightarrow$

- \Rightarrow to address the question of neutrino mass hierarchy
- \Rightarrow to determine the mixing angle θ_{13} precisely

Magic baseline

The appearance probability ($\nu_e \rightarrow \nu_\mu$) in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{12}^2 / \Delta m_{13}^2$ and $\sin 2\theta_{13}$,

$$P_{e\mu} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

$$\pm \alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2};$$

where $\Delta \equiv \Delta m_{13}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{13}^2$.

Magic Baseline (contd.)

If one chooses: $\sin(\hat{A}\Delta) = 0$

- The δ dependence disappears from $P(\nu_e \rightarrow \nu_\mu)$.
- A clean measurement of the hierarchy and θ_{13} is possible without any correlation with δ .

Magic Baseline (contd.)

If one chooses: $\sin(\hat{A}\Delta) = 0$

- The δ dependence disappears from $P(\nu_e \rightarrow \nu_\mu)$.
- A clean measurement of the hierarchy and θ_{13} is possible without any correlation with δ .

The first non-trivial solution: $\sqrt{2}G_F n_e L = 2\pi$

- For an approximately isoscalar medium of constant density ρ : $L_{\text{magic}}[\text{km}] \approx 32726/\rho[\text{gm/cm}^3]$.
- The averaged density for the CERN-INO path turns out to be $\rho = 4.15$ gm/cc for which $L_{magic} = 7886$ km.

CERN – INO long baseline

• The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm^2_{23} .

CERN – INO long baseline

- The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm^2_{23} .
- The CERN-INO baseline, close to the 'magic' value, ensures essentially no dependence of the final results on δ .
- This permits a clean measurement of θ_{13} avoiding the degeneracy issues which plague other baselines.

Interaction Cross sections

⇒ in case of low energy the quasi-elastic events dominate and the cross-section grows rapidly for $E_{\nu} \leq 1$ GeV

Interaction Cross sections

- ⇒ in case of low energy the quasi-elastic events dominate and the cross-section grows rapidly for $E_{\nu} \leq 1 \text{ GeV}$
- ⇒ in the highest-energy case for $E_{\nu} \ge$ a few GeV, samples are mostly deep-inelastic scattering and the growth is linear in the neutrino energy
- ⇒ for the medium-energy case, there is a sizeable contribution from both types of events, as well as resonant channels which is dominated by the Δ (1232) resonance

Cross sections (contd.)

- We have considered all type of events. Deep-inelastic events dominate.
- There is also 10% contribution of quasi-elastic and single-pion production events each.

Cross sections (contd.)

- We have considered all type of events. Deep-inelastic events dominate.
- There is also 10% contribution of quasi-elastic and single-pion production events each.
- Atmospheric neutrino and other backgrounds will be eliminated by the directionality cut imposed in event selection.
- Here all the plots are obtained by numerically solving the full 3-flavour neutrino propagation equation.

Δm^2_{23} determination

Figure 5: The number of events as a function of θ_{13} for neutrinos (antineutrinos) is shown in the left (right) panel for a 5-year run. The blue (red) curves correspond to $\Delta m_{23}^2 < 0$ ($\Delta m_{23}^2 > 0$).

Determination of the sign(Δm^2_{23}) \rightarrow

- ⇒ the mass hierarchy can be probed at the 5.3 (3.4) σ level with a neutrino (anti-neutrino) beam for values of $\sin^2 \theta_{13}$ as low as 0.0003
- \Rightarrow the sensitivity increases dramatically with θ_{13}

Determination of the sign(Δm^2_{23}) \rightarrow

- ⇒ the mass hierarchy can be probed at the 5.3 (3.4) σ level with a neutrino (anti-neutrino) beam for values of $\sin^2 \theta_{13}$ as low as 0.0003
- \Rightarrow the sensitivity increases dramatically with θ_{13}
- ⇒ for Δm_{23}^2 within the present 1σ interval [1.85 2.48] $\times 10^{-3}$ eV², this significance varies within 4.8 5.7 σ (3.6 3.0 σ) for neutrinos (anti-neutrinos)

$\sin^2 2\theta_{13}$	ν_e -beam (3 σ)	$\bar{\nu}_e$ -beam (3 σ)
0.01	2.82 years	3.16 years
0.03	1.07 years	1.15 years
0.08	178 days	197 days

Table 1: measurement of hierarchy with only one type of beam at a time

Error estimation \rightarrow

- \Rightarrow we have considered an uncertainty of 2% in the knowledge of the number of ions in the storage ring
- \Rightarrow we have assumed a 10% fluctuation in the cross section, σ

Error estimation \rightarrow

- \Rightarrow we have considered an uncertainty of 2% in the knowledge of the number of ions in the storage ring
- \Rightarrow we have assumed a 10% fluctuation in the cross section, σ
- ⇒ the statistical error has been added to the above in quadrature
- \Rightarrow we have neglected nuclear effects

θ_{13} measurement

Figure 6: Variation of the number of events with θ_{13} for ν (left) and $\bar{\nu}$ (right) for a 5-year run. Here, Δm_{23}^2 is chosen + (-) for ν ($\bar{\nu}$).

θ_{13} measurement (contd.)

Precision measurement of $\theta_{13} \rightarrow$

- $\Rightarrow \sin^2 2\theta_{13}$ can be probed down to 0.001
- ⇒ the estimated 3σ errors on θ_{13} measured to be $1^{\circ}(5^{\circ})$ are $^{+0.6^{\circ}}_{-0.5^{\circ}}$ ($^{+2.3^{\circ}}_{-1.5^{\circ}}$) with $\delta = 0^{\circ}$ and $\Delta m^2_{23} > 0$ for neutrinos

θ_{13} measurement (contd.)

Precision measurement of $\theta_{13} \rightarrow$

- $\Rightarrow \sin^2 2\theta_{13}$ can be probed down to 0.001
- ⇒ the estimated 3σ errors on θ_{13} measured to be $1^{\circ}(5^{\circ})$ are $^{+0.6^{\circ}}_{-0.5^{\circ}}$ ($^{+2.3^{\circ}}_{-1.5^{\circ}}$) with $\delta = 0^{\circ}$ and $\Delta m^2_{23} > 0$ for neutrinos
- ⇒ for $\bar{\nu}$ with $\Delta m_{23}^2 < 0$ the fluctuations are $^{+0.9^{\circ}}_{-0.8^{\circ}}$ ($^{+2.7^{\circ}}_{-1.7^{\circ}}$) around $1^{\circ}(5^{\circ})$ at 3σ level
- ⇒ the 1 σ error of Δm_{23}^2 translates to uncertainties of $^{+0.5^{\circ}}_{-0.4^{\circ}}$ ($^{+0.7^{\circ}}_{-0.2^{\circ}}$) at $\theta_{13} = 5^{\circ}$ for a ν ($\bar{\nu}$) beam with normal (inverted) hierarchy

boost .vs. hierarchy

Figure 7: The sensitivity in the hierarchy measurement as a function of γ for neutrinos (anti-neutrinos) is shown in the left (right) panel.

boost .vs. precision in θ_{13}

Figure 8: Variation of precision in the measurement of θ_{13} with γ at 3σ level for ν with $\Delta m_{23}^2 > 0$ (left) and $\bar{\nu}$ with $\Delta m_{23}^2 < 0$ (right).

θ_{13} , δ degeneracy

Figure 9: Showing the degeneracy between θ_{13} and δ with $\sin^2 2\theta_{13} = 0.001$ and $\delta = 0^\circ$ as input values.

Some comments

- In principle, the long baseline beta beam experiment can narrow down the permitted range of Δm_{23}^2 .
- However, it is very likely that this improvement will be achieved in the meanwhile by other experiments.

Conclusions

• We have discussed the prospects of obtaining information on the mixing angle θ_{13} and the sign of Δm^2_{23} using the proposed ICAL detector at INO with a high γ beta beam source at CERN.

Conclusions

- We have discussed the prospects of obtaining information on the mixing angle θ_{13} and the sign of Δm^2_{23} using the proposed ICAL detector at INO with a high γ beta beam source at CERN.
- The performance of the CERN INO baseline is quite significant in comparison with other baselines avoiding the issue of degeneracy.
- It appears that such a combination of a high intensity $\nu_e, \bar{\nu}_e$ source and a magnetized iron detector is well-suited for this purpose.