Prospects of INO with Neutrino Beams

Sanjib Kumar Agarwalla sanjib@mri.ernet.in

Harish-Chandra Research Institute, Allahabad, India

Panjab University

!!! Thanks to all of you **!!!**

- **Present Status** & Missing Links
- **Game Plan :** ν Roadmap

- Present Status & Missing Links
- **Game Plan :** ν Roadmap
- **Golden Channel**", $P_{e\mu}$
- "Eight-fold" degeneracy
 - "Magic Baseline"

¥ (8)

- Present Status & Missing Links
- **Game Plan :** ν Roadmap
- **Golden Channel**", $P_{e\mu}$
- "Eight-fold" degeneracy
 - "Magic Baseline"

¢

- India-Based Neutrino Observatory (INO)
- **D** β -beam and ν -factory

- Present Status & Missing Links
- **Game Plan :** ν Roadmap
- **Golden Channel**", $P_{e\mu}$
- "Eight-fold" degeneracy
 - "Magic Baseline"
- India-Based Neutrino Observatory (INO)
- **D** β -beam and ν -factory
- Results

¢

Conclusions

Then and Now

Then (1930): Pauli

Ø

I have hit upon a desperate remedy to save the exchange theorem and the conservation of energy. Namely, the possibility that there could exist electrically neutral spin $\frac{1}{2}$ particles of small mass

Then and Now

Then (1930): Pauli

I have hit upon a desperate remedy to save the exchange theorem and the conservation of energy. Namely, the possibility that there could exist electrically neutral spin $\frac{1}{2}$ particles of small mass

Now (2004): APS Neutrino Study Group

Much of what we know about neutrinos we have learned in the last six years. We have so many new questions, ... We are most certain of one thing : neutrinos will continue to surprise us

Past and Present

Neutrino physice, a bit player on the physics stage in yesteryears, has now donned a central role

Past and Present

Neutrino physice, a bit player on the physics stage in yesteryears, has now donned a central role

Neutrino oscillations : Firmly established by solar, atmospheric, reactor and accelerator expts

!!! We are now in precision regime **!!!**

Past and Present

Neutrino physice, a bit player on the physics stage in yesteryears, has now donned a central role

Neutrino oscillations : Firmly established by solar, atmospheric, reactor and accelerator expts

!!! We are now in precision regime **!!!**

Next generation experiments : planned/proposed world-wide to further pin down the values of the oscillation parameters

Present Status

Parameter	Best fit	3σ (1 d.o.f)
$\Delta m_{21}^2 \ [10^{-5} \ eV^2]$	7.6	7.1 - 8.3
$ \Delta m_{31}^2 \ [10^{-3} \ eV^2]$	2.4	2.0 – 2.8
$\sin^2 \theta_{12}$	0.32	0.26 - 0.40
$\sin^2 \theta_{23}$	0.50	0.34 – 0.67
$\sin^2 heta_{13}$	0.007	≤ 0.050

M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, hep-ph/0405172v6

Best-fit values under 3 flavour scheme

Data from Solar + Atmospheric + Reactor (KamLAND and CHOOZ) + Accelerator (K2K and MINOS) expts

Unsolved Issues

The sign of Δm_{31}^2 $(m_3^2 - m_1^2)$ is not known.
Neutrino mass spectrum can be normal or inverted hierarchical

1st Step : Transition Era \Rightarrow Ongoing : 2005-2010 (phase-0)

1st Step : Transition Era \Rightarrow Ongoing : 2005-2010 (phase-0)

Aim

- Improve the precision on the atmospheric parameters looking at ν_{μ} disappearance
- Study $\nu_{\mu} \rightarrow \nu_{\tau}$ to ascertain atm. osc and first see $\nu_{\mu} \rightarrow \nu_{e}$

1st Step : Transition Era \Rightarrow Ongoing : 2005-2010 (phase-0)

Aim

- Improve the precision on the atmospheric parameters looking at ν_{μ} disappearance
- Study $\nu_{\mu} \rightarrow \nu_{\tau}$ to ascertain atm. osc and first see $\nu_{\mu} \rightarrow \nu_{e}$

Candidates (Conventional Beam Expts)

K2K (terminated)
 MINOS, OPERA (running)
 ICARUS (starting soon)

2nd Step : 1-3 mixing Era \Rightarrow Approved/Proposed : 2008-2015 (phase-1)

2nd Step : 1-3 mixing Era \Rightarrow Approved/Proposed : 2008-2015 (phase-1)

Aim

- Substantiate visibility of θ_{13} driven transitions : $\nu_{\mu} \rightarrow \nu_{e}, \ \bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
- **Penetrate** $\sin^2 2\theta_{13}$ down to 0.01 (today < 0.17)

2nd Step : 1-3 mixing Era \Rightarrow Approved/Proposed : 2008-2015 (phase-1)

Aim

- Substantiate visibility of θ_{13} driven transitions : $\nu_{\mu} \rightarrow \nu_{e}, \ \bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
- **Penetrate** $\sin^2 2\theta_{13}$ down to 0.01 (today < 0.17)

Candidates (Superbeam & Reactor Expts)

- **T2K** [Superbeam] (Approved : Starting in 2009)
- **Solution** Nova [Superbeam] (Proposed : Expected in 2012)
 - Double Chooz, Daya Bay, Reno, Angra, KASKA, ... [Reactor]

3rd Step : Precision Era \Rightarrow To be prepared : 2015-2025 (phase-2)

3rd Step : Precision Era \Rightarrow To be prepared : 2015-2025 (phase-2)

$\sin^2 2\theta_{13} > 0.01 \quad \leftarrow \quad \mathbf{Known \ by \ 2012} \quad \rightarrow \quad \sin^2 2\theta_{13} < 0.01$

3rd Step : Precision Era \Rightarrow To be prepared : 2015-2025 (phase-2)

 $\sin^2 2\theta_{13} > 0.01 \quad \leftarrow \quad \mathbf{Known \ by \ 2012} \quad \rightarrow \quad \sin^2 2\theta_{13} < 0.01$

 $\sin^2 2\theta_{13} > 0.01$

We can probe it by existing facilities

...Keep in mind...

Very small sensitivity to δ_{CP} and neutrino mass ordering

3rd Step : Precision Era \Rightarrow To be prepared : 2015-2025 (phase-2)

 $\sin^2 2\theta_{13} > 0.01 \quad \leftarrow \quad \mathbf{Known \ by \ 2012} \quad \rightarrow \quad \sin^2 2\theta_{13} < 0.01$

 $\sin^2 2\theta_{13} > 0.01$

We can probe it by existing facilities

...Keep in mind...

Very small sensitivity to δ_{CP} and neutrino mass ordering

 $\sin^2 2\theta_{13} < 0.01$

Beyond the reach of ongoing expts at that time

Pure and more intense beams with precisely known spectrum

Larger detectors with good energy resolution, granularity, ...

P

P

!!! Very Tough Ask !!!

Golden Channel $(P_{e\mu})$

The appearance probability $(\nu_e \rightarrow \nu_\mu)$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$,

$$P_{e\mu} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} + \alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} + \alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} + \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2};$$

where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$

Cervera et al., hep-ph/0002108

Freund, Huber, Lindner, hep-ph/0105071

P

Eight-fold Degeneracy

 $\blacksquare (\theta_{13}, \delta_{CP}) \text{ intrinsic degeneracy}$

Burguet-Castell, Gavela, Gomez-Cadenas, Hernandez, Mena, hep-ph/0103258

 $(sgn(\Delta m_{31}^2), \delta_{CP}) degeneracy$

Minakata, Nunokawa, hep-ph/0108085

 \square $(\theta_{23}, \pi/2 - \theta_{23})$ degeneracy

Fogli, Lisi, hep-ph/9604415

Severely deteriorates the sensitivity

Problem & Solution

Degeneracies create "Clone" Solutions

Barger, Marfatia, Whisnant, hep-ph/0112119

Degeneracies create "Clone" Solutions

P

Barger, Marfatia, Whisnant, hep-ph/0112119

 $P_{\mu e} \Rightarrow \mathbf{SuperBeam}$

$$P_{e\mu} \Rightarrow$$
Beta Beam

 $P_{e\mu} \Rightarrow$ **Neutrino Factory**

Need smart ideas to play with these channels

• Combine data from appearance expts at different L and/or different E

C

Barger, Marfatia, Whisnant, hep-ph/0206038

Barger, Marfatia, Whisnant, hep-ph/0210428

Burguet-Castell et al, hep-ph/0103258

Huber, Lindner, Winter, hep-ph/0211300

Mena and Parke, hep-ph/0408070

and there are others also ...

Add data from different channels

D The Silver Channel, $P_{e\tau}$

Autiero et al, hep-ph/0305185

Donini, Meloni, Migliozzi, hep-ph/0206034

I The Disappearance Channel, $P_{\mu\mu}$

 $Donini, \, Fernandez-Martinez, \, Meloni, \, Rigolin, \, hep-ph/0512038$

 $Donini, \, Fernandez-Martinez, \, Rigolin, \, hep-ph/0411402$

Adding reactor antineutrino data

Huber, Lindner, Schwetz, Winter, hep-ph/0303232

Adding atmospheric neutrino data

P

Huber, Maltoni, Schwetz, hep-ph/0501037

Campagne, Maltoni, Mezzetto, Schwetz, hep-ph/0603172

@@@@ One of the most elegant ideas **@@@@**

Kill the "Clones" at the "Magic" Baseline

Huber, Winter, hep-ph/0301257

Smirnov, hep-ph/0610198

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.19/56

Magic Baseline

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.20/56

Magic Baseline

If one chooses : $\sin(\hat{A}\Delta) = 0$

C

- In The δ_{CP} dependence disappears from $P_{e\mu}$
- Golden channel enables a clean determination of θ_{13} and $sgn(\Delta m_{31}^2)$

Magic Baseline

If one chooses : $sin(A\Delta) = 0$

- The δ_{CP} dependence disappears from $P_{e\mu}$
- Golden channel enables a clean determination of θ_{13} and $sgn(\Delta m_{31}^2)$

First non-trivial solution: $\sqrt{2}G_F n_e L = 2\pi$ (indep of E)

- - Isoscalar medium of constant density ρ : $L_{\rm magic}[{\rm km}] \approx 32725/\rho[{\rm gm/cm}^3]$
- According to PREM, the "Magic Baseline"

 $L_{\text{magic}} = 7600 \text{ km}$

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.20/56

Resonance in matter effect

The very long CERN - INO baseline provides an excellent avenue to pin-down matter induced contributions

In particular, a resonance occurs at

$$E_{res} \equiv \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$
$$= 7.45 \text{ GeV}$$

with $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and $\rho_{av} = 4.17 \text{ gm/cc}$ (PREM) for the baseline of 7152 km

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.21/56

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.22/56

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.23/56

Neutrino Observatories

Location of main neutrino-related observatories

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.24/56

The India-based Neutrino Observatory

The INO/ICAL will be the world's first magnetized large mass iron calorimeter with interleaved Glass RPC detectors

Funding considerations in final stage

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.25/56

Location of INO

PUSHEP Site (Lat: N11.5°, Long: E76.6°)

PUSHEP-Bangalore: 250km

http://www.imsc.res.in/~ino/

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.26/56

Spokesperson: Prof. N.K. Mondal, TIFR

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.27/56

INO : 2nd Phase

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.28/56

A magnetized Iron calorimeter (ICAL) detector with excellent efficiency of charge identification (~ 95%) and good energy determination

- Preferred location is <u>Singara (PUSHEP)</u> in the Nilgiris (near Bangalore), 7152 km from CERN
- A (50+50) Kton Iron detector

R

• Oscillation signal is the muon track $(\nu_e \rightarrow \nu_\mu \text{ channel})$

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.29/56

Detector assumptions

C

Total Mass	50 kton
Energy threshold	1 GeV
Detection Efficiency (ϵ)	80%
Charge Identification Efficiency (f_{ID})	95%

Detector characteristics used in the simulations

All studies assume a Gaussian energy resolution function with $\sigma = 0.15E$

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.30/56

 β -beam vs. ν -factory

Ø

Schematic Lay-out

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.31/56

 β -beam vs. ν -factory

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.32/56

 β -beam vs. ν -factory

 β -beam Origin ${}^8_5B \rightarrow {}^8_4Be + e^+ + \nu_e$ ${}^8_3Li \rightarrow {}^8_4Be + e^- + \bar{\nu}_e$ CID (Mag Field) Not Mandatory Lumi (useful decays) $1.1 \times 10^{18} / yr (\nu)$ $2.9 \times 10^{18} / \text{yr} (\bar{\nu})$ **Parameters** Boost, γ (50 to 650) Baseline, L

 ν -factory Origin $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ CID (Mag Field) Mandatory (ICAL) Lumi (useful decays) $1.2 \times 10^{20} / yr (1 MW)$ $4.8 \times 10^{20} / yr$ (4 MW) **Parameters** E_{μ} (20 to 50 GeV) Baseline, L

! They will draw the punch line in this business !

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.33/56

What is Beta Beam?

A pure, intense, collimated beam of ν_e or $\bar{\nu}_e$, essentially background free

P. Zucchelli, Phys. Lett. B 532 (2002) 166

Beta decay of completely ionized, radioactive ions circulating in a storage ring. No contamination of other types of neutrinos

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.34/56

Ion	au (s)	E_0 (MeV)	f	Decay fraction	Beam
$18 \atop 10$ Ne	2.41	3.92	820.37	92.1%	$ u_e $
${}_2^6$ He	1.17	4.02	934.53	100%	$ar{ u}_e$
$\frac{8}{5}\mathbf{B}$	1.11	14.43	600684.26	100%	$ u_e$
${}^8_3 extsf{Li}$	1.20	13.47	425355.16	100%	$ar{ u}_e$

Comparison of different source ions

Low- γ design, useful decays in case of anti-neutrinos can be 2.9×10^{18} /year and for neutrinos 1.1×10^{18} /year

Larger total end-point energy, E_0 is preferred

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.35/56

β -beam flux at INO-ICAL

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

Boosted on-axis spectrum of ν_e and $\bar{\nu}_e$ at the INO-ICAL assuming no oscillation

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.36/56

Event Rates in INO-ICAL

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

Event rates sharply depend on mass ordering and θ_{13}

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.37/56

Agarwalla, Choubey, Raychaudhuri, 0711.1459

Event rates sharply depend on mass ordering and θ_{13}

Effect of δ_{CP} is negligible at magic baseline

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.38/56

Iso-event curves

C

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

At CERN-INO distance, the effect of δ_{CP} on the measurement of θ_{13} is less

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.39/56

Measurement of $\sin^2 2\theta_{13}$

Full marginalization over

- hierarchy
- all oscillation parameters
- In the normalization factor of the Earth matter density distribution

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.40/56

Agarwalla, Choubey, Raychaudhuri, 0711.1459

Left panel shows the 3σ sensitivity limit for $\sin^2 2\theta_{13}$

Right panel shows the 3σ discovery reach for $\sin^2 2\theta_{13}$

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.41/56

Agarwalla, Choubey, Raychaudhuri, Winter, 0802.3621

 $\sin^2 2\theta_{13}$ sensitivity at 3σ as a function of L and Boost factor γ S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.42/56

ν -factory Optimization

Ø

Huber, Lindner, Rolinec, Winter, hep-ph/0606119

 $\sin^2 2\theta_{13}$ sensitivity at 5σ , $\mathbf{E}_{\mu} = \mathbf{30} \ GeV$, $\mathbf{L} = \mathbf{7500} \ \mathbf{km}$ (Optimal choice)

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.43/56

Sensitivity to $Sgn(\Delta m_{31}^2)$

Full marginalization over

- all oscillation parameters
- the normalization factor of the Earth matter density distribution

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.44/56

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.45/56

Agarwalla, Choubey, Raychaudhuri, Winter, 0802.3621

Sensitivity to normal mass ordering at 3σ as a function of L and γ

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.46/56

Huber, Lindner, Rolinec, Winter, hep-ph/0606119 Sensitivity to NH (true) at 3σ , $E_{\mu} = 20$ to 40 GeV, L = 7500 km (Best)

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.47/56

An ask : New Physics

- Can upcoming neutrino experiments probe non-standard interactions (NSI) like R supersymmetry?
- Can they become fatal in attempts to further sharpen the neutrino properties?

A possible experiment

CERN based β -beam neutrino source + The proposed India-based Neutrino Observatory (INO)

A baseline of \sim 7152 Km

 $\nu \text{ interacts with earth matter } \Rightarrow \text{ a possible ground} \\
\text{ for NSI}$

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 $\rm p.48/56$

Adhikari, Agarwalla, Raychaudhuri, hep-ph/0608034 Muon events .vs. $\sin^2 2\theta_{13}$ for NH and IH. The solid lines correspond to the SM. The shaded area is covered if the λ' couplings are varied over their entire allowed range S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.49/56

Adhikari, Agarwalla, Raychaudhuri, hep-ph/0608034

Event rates .vs. $|\lambda'|$, present singly, for NH and IH. The thick (thin) lines are for $|\lambda'_{331}|$ ($|\lambda'_{2m1}|$, m = 2,3). The chosen $\sin^2 2\theta_{13}$ are indicated next to the curves S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.50/56

Long Range Forces at ICAL

P

Can upcoming long baseline neutrino experiments probe flavor dependent long range (LR) leptonic forces, mediated by the $L_e - L_\mu$ or $L_e - L_\tau$ gauge bosons?

Can ICAL play an important role along this direction?

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.51/56

Coming soon \rightarrow Agarwalla, Joshipura, Mohanty

Event rates for the normal and inverted mass hierarchies in the presence of $L_e - L_\mu$ symmetry with $\gamma = 500$ and neutrino run

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.52/56

 $\mathbf{Coming\ soon} \rightarrow \mathbf{Agarwalla,\ Joshipura,\ Mohanty}$

Events vs. $\alpha_{e\mu}$ for the NH (left panel) and IH (right panel) with $L_e - L_{\mu}$ symmetry with $\gamma = 500$ and ν run. Chosen $\sin^2 2\theta_{13}$ are indicated next to the curve S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.53/56

References

- D. Choudhury, A. Datta, JHEP 0507:058,2005, hep-ph/0410266
- S. K. Agarwalla, A. Raychaudhuri, A. Samanta, Phys.Lett.B629:33-40,2005, hep-ph/0505015
- P. Huber, M. Lindner, M. Rolinec, W. Winter, Phys.Rev.D74:073003,2006, hep-ph/0606119
- R. Adhikari, S. K. Agarwalla, A. Raychaudhuri, Phys.Lett.B642:111-118,2006, hep-ph/0608034
- S. K. Agarwalla, S. Choubey, A. Raychaudhuri, Nuclear Physics B 771 (2007) 1, hep-ph/0610333
- R. Gandhi, W. Winter, Phys.Rev.D75:053002,2007, hep-ph/0612158

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.54/56

References (Continued...)

- S. K. Agarwalla, S. Choubey, A. Raychaudhuri, 0711.1459
- S. K. Agarwalla, S. Choubey, A. Raychaudhuri, Walter Winter
 0802.3621

S. K. Agarwalla, Anjan S. Joshipura, S. Mohanty In preparation

• Long baseline neutrino oscillation experiments using neutrino factories and β -beams hold promise of refining our knowledge of θ_{13} , δ , and the sign of Δm_{31}^2

! They will draw the punch line in this business !

- ICAL at INO will be an admirable choice as a far detector for a very long baseline experiment, with a source either in CERN, or in JHF, or even in Fermilab
- A magnetized iron calorimeter detector like INO is essential for Neutrino Factory and its performance with Beta Beam is quite impressive

S. K. Agarwalla Panjab University, Chandigarh, India 29th February, 08 p.56/56