Physics with India-based Neutrino Observatory (INO)

Amol Dighe

Tata Institute of Fundamental Research, Mumbai, India (For INO Collaboration)

All documents regarding INO are available at http://www.imsc.res.in/~ino

A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 300 Km south of Bangalore.

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 300 Km south of Bangalore.
- A cavern of dimensions $120m \times 22 m \times 30m$ will be constructed at the end of a 1.5 Km long tunnel.

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 300 Km south of Bangalore.
- A cavern of dimensions $120m \times 22 m \times 30m$ will be constructed at the end of a 1.5 Km long tunnel.
- At least 1 km of rock overburden in all directions (similar to Gran Sasso).

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 300 Km south of Bangalore.
- A cavern of dimensions $120m \times 22 m \times 30m$ will be constructed at the end of a 1.5 Km long tunnel.
- At least 1 km of rock overburden in all directions (similar to Gran Sasso).
- INO will house 50 kiloton Iron CALorimeter (ICAL) capable of detecting atmospheric $\nu_{\mu}/\bar{\nu}_{\mu}$ interactions.

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 300 Km south of Bangalore.
- A cavern of dimensions $120m \times 22 m \times 30m$ will be constructed at the end of a 1.5 Km long tunnel.
- At least 1 km of rock overburden in all directions (similar to Gran Sasso).
- INO will house 50 kiloton Iron CALorimeter (ICAL) capable of detecting atmospheric $\nu_{\mu}/\bar{\nu}_{\mu}$ interactions.
- May also host some smaller experiments (such as neutrinoless double beta decay searches) which require low cosmic ray background environments.

Location of PUSHEP

A view of PUSHEP

Physics withIndia-based Neutrino Observatory (INO) - p.4/33

Underground Cavern

Layout of the Underground Cavern

Size of the experimental hall 150 m X 22 m X 30 m

Total mass of 50 kilotons.

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16 m \times 12m$.

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16 m \times 12m$.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16 m \times 12m$.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.
- Magnetic field (1.3 T) allows determination of muon charge so that ν_{μ} and $\bar{\nu}_{\mu}$ can be studied separately.

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16 m \times 12m$.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.
- Magnetic field (1.3 T) allows determination of muon charge so that ν_{μ} and $\bar{\nu}_{\mu}$ can be studied separately.
- Similar to the earlier Monolith proposal.

INO Detector Concept

Two possible magnet designs

A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pickout strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pickout strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle
- The z coordinate is provided by the location of RPC itself.

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pickout strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle
- The z coordinate is provided by the location of RPC itself.
- Good reconstruction of energy and direction of charged particles.

- Total number of RPC units: 27000
- Number of electronic readout channels: 3.6 million

Physics Motivations

- Reconfirm the first oscillation dip as a function of L/E in atmospheric neutrinos (to a greater significance level)
- Measure $|\Delta_{31}|$ and $\sin^2 2\theta_{23}$ precisely
- Determine neutrino mass hierarchy (normal/inverted)
- Resolve the θ_{23} octant ambiguity
- Distinguish between $\nu_{\mu} \leftrightarrow \nu_{\tau}$ and $\nu_{\mu} \leftrightarrow \nu_{s}$
- Search for CPT violation

Physics Motivations

- Reconfirm the first oscillation dip as a function of L/E in atmospheric neutrinos (to a greater significance level)
- Measure $|\Delta_{31}|$ and $\sin^2 2\theta_{23}$ precisely
- Determine neutrino mass hierarchy (normal/inverted)
- Resolve the θ_{23} octant ambiguity
- Distinguish between $\nu_{\mu} \leftrightarrow \nu_{\tau}$ and $\nu_{\mu} \leftrightarrow \nu_{s}$
- Search for CPT violation

All results are generated assuming 15% resolution in L as well as E, unless specified otherwise.

L/E distribution of muon events

red: down-going, blue: up-going

Exposure 250 kt-years, $\theta_{23}=\pi/4$, $E_{\rm thresh}=5$ GeV ??

Up/Down ratio of muon events

- Position of the dip $\Rightarrow \Delta m_{
 m atm}^2$
- Up/Down ratio at the dip $\Rightarrow \sin^2 2\theta_{23}$

Precision for $|\Delta_{31}|$ and $\sin^2\theta_{23}$

Experiment	Δ_{31}	$\sin^2 \theta_{23}$
Current data	88%	79%
MINOS + CNGS	26%	78%
T2K (SK, 0.75 MW, 5 years)	12%	46%
NOvA (30 Kton, 0.6 MW, 5 years)	25%	86%
ICAL (50 Kton, atm ν , 5 years)	20%	60%

- Input values: $|\Delta_{31}| = 0.002 \text{ eV}^2$ and $\theta_{23} = \pi/4$.
- Table adapted from P. Huber et al., hep-ph/0412133, with the information of ICAL added.

The relative error on $|\Delta_{31}|$ and $\sin^2\theta_{23}$

• Error as a function of the input value of $|\Delta_{31}|$ at 2 σ .

Mass hierarchy (normal/inverted)

• At resonance energies and long pathlengths, matter effects modify ν_{μ} survival probability significantly.

R. Gandhi *et al.*, PRL 94, 051801 (2005) PRD 73, 053001 (2006)

Situation reversed for antineutrinos

Up-down ratios for ν **and** $\bar{\nu}$

The difference in the up/down ratio for ν_{μ} and $\bar{\nu}_{\mu}$: $\mathcal{A} \equiv U/D - \bar{U}/\bar{D}$ as a function of L/E is very sensitive to the sign of Δ_{31} .

R: energy/time resolution included

blue: normal hierarchy red: inverted hierarchy

D. Indumathi and M.V.N. Murthy, PRD 71, 013001 (2005)
INO Interim Project Report,
May 2006

Higher $E_{\min} \Rightarrow$ more asymmetry but less events

$\Delta A \equiv A_{\text{norm}} - A_{\text{inv}}$

Exposure (kt-years)	θ_{13}	$\Delta \mathcal{A}$	Signifi cance
480	7°	0.167 ± 0.230	$0.7\sigma, 51.6\%$
1120	7°	0.167 ± 0.151	$1.1\sigma, 72.9\%$
480	11°	0.415 ± 0.230	$1.8\sigma, 92.8\%$
1120	11°	0.415 ± 0.150	$2.8\sigma, 99.6\%$
480	7°	0.232 ± 0.220	$1.1\sigma, 72.9\%$
1120	7°	0.232 ± 0.144	$1.6\sigma, 89.0\%$
480	11°	0.565 ± 0.220	$2.6\sigma, 99.1\%$
1120	11°	0.565 ± 0.144	$3.9\sigma, 99.99\%$

- E and L resolutions of 15% (upper) and 10% (lower).
- Exposure time 480 kt-year $\longrightarrow 1120$ kt-year has the same effect as resolution $15\% \longrightarrow 10\%$
- Importance of L and E resolution highlighted in S. Petcov and T. Schwetz, NPB 740, 1 (2006)

Octant ambiguity of θ_{23}

(Is θ_{23} greater or less than $\pi/4$?)

• One of the matter dependent terms in $P_{\mu\mu}$ goes as $\sin^4\theta_{23}$. By appropriate cuts on E and L this term can be isolated and to determine if θ_{23} is greater or less than $\pi/4$.

S. Choubey and P. Roy, PRD 73, 013006 (2006)

D. Indumathi *et al.*, hep-ph/0603032

- At present $|D \equiv 0.5 \sin^2 \theta_{23}|$ is constrained to be about 0.16 at 3σ . If $\sin^2 \theta_{13} = 0.02$ then 1000 kt-year exposure can:
 - measure a non-zero value for |D| > 0.09 at 3σ .
 - Determine the sign of D for |D| > 0.1 at 3σ

$P_{\mu\mu}$ as a function of θ_{23}

- For high E, only the magnitude of D measurable
- For intermediate E, even the sign of D discernible

 Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours
- ν_{τ} CC events (above 4 GeV) produce a τ , whose decays are muonless 80% of the time

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours
- ν_{τ} CC events (above 4 GeV) produce a τ , whose decays are muonless 80% of the time
- $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations produce an excess of upward going muonless events.

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours
- ν_{τ} CC events (above 4 GeV) produce a τ , whose decays are muonless 80% of the time
- $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations produce an excess of upward going muonless events.
- $\nu_{\mu} \rightarrow \nu_{s}$ oscillations produce a deficit of upward going NC events

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours
- ν_{τ} CC events (above 4 GeV) produce a τ , whose decays are muonless 80% of the time
- $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations produce an excess of upward going muonless events.
- $\nu_{\mu} \rightarrow \nu_{s}$ oscillations produce a deficit of upward going NC events
- Possible to determine directly (rather than by global fits) what fraction of ν_{μ} are oscillating into sterile neutrinos.

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours
- ν_{τ} CC events (above 4 GeV) produce a τ , whose decays are muonless 80% of the time
- $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations produce an excess of upward going muonless events.
- $\nu_{\mu} \rightarrow \nu_{s}$ oscillations produce a deficit of upward going NC events
- Possible to determine directly (rather than by global fits) what fraction of ν_{μ} are oscillating into sterile neutrinos.
- MINOS is also capable of doing this

Up-down asymmetry for muonless events

Asymmetry vs. E for different Δ_{31} values for $\nu_{\mu} \rightarrow \nu_{\tau}$ and $\nu_{\mu} \rightarrow \nu_{s}$

CPT violation

- Charge determination \Rightarrow both $P_{\mu\mu}$ and $P_{\bar{\mu}\bar{\mu}}$ measurable independently.
- Possibility of searching for CPT violation.
- CPT violation Parametrized as: $\mathcal{L}_{\text{CPT}} = \bar{\nu}_L^{\alpha} b_{\alpha\beta}^{\mu} \gamma_{\mu} \nu_L^{\beta}$ V. Barger et al., PRL 85, 5055 (2000)
- Energy operator becomes $H = m^2/2E + b^0$
- Measurable CPT violating parameter: δb , the difference in the eigenvalues of the b^0 matrix

A. Datta et al, Phys. Lett. B 597, 356 (2004).

Sensitivity to CPT violation

- L/E distribution can detect $\delta b \gtrsim 10^{-23}$ GeV
- To be compared to $\Delta m^2/2E \sim 10^{-21}$ GeV

Determination of δb

• For $\delta b > 10^{-22}$ GeV, distribution in L is sensitive to the value of δb

A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified
- ?? The INO Project Report finalized in May 2006 and sent to International referees

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified
- ?? The INO Project Report finalized in May 2006 and sent to International referees
- Feasibility studies and optimization in progress, lots of things to be done

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified
- ?? The INO Project Report finalized in May 2006 and sent to International referees
- Feasibility studies and optimization in progress, lots of things to be done
- ICAL can be the end detector for neutrinos from muon storage rings: distance from JPARC/CERN ~ 7000 km (magic baseline)

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified
- ?? The INO Project Report finalized in May 2006 and sent to International referees
- Feasibility studies and optimization in progress, lots of things to be done
- ICAL can be the end detector for neutrinos from muon storage rings: distance from JPARC/CERN ~ 7000 km (magic baseline)
- We welcome more International participation

That's all, folks!

Extra slides

$P_{\mu\mu}$ in vacuum and matter

Muon neutrino survival probability in vacuum:

$$P_{\mu\mu}(vac) = 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13} \sin^2 (1.27\Delta_{31}L/E)$$
$$-\sin^4 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27\Delta_{31}L/E)$$

Muon neutrino survival probability in matter:

$$P_{\mu\mu}(mat) = 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left[1.27(\Delta_{31} + A + \Delta_{31}^m) L/2E \right]$$
$$-\sin^2 2\theta_{23} \sin^2 \theta_{13}^m \sin^2 \left[1.27(\Delta_{31} + A - \Delta_{31}^m) L/2E \right]$$
$$-\sin^4 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \left(1.27\Delta_{31}^m L/E \right)$$

$$A = 2\sqrt{2}G_F N_e E$$

$P_{\mu\mu}$ for both hierarchies, $L=9700~{ m km}$

$P_{\mu\mu}$ vs. θ_{23} for L=9700 km

CPT violation: a comment

If we parametrize CPT violation as

$$\Delta = \Delta_{\rm GUT} + \Delta_{\rm CPT}$$
 and $\overline{\Delta} = \Delta_{\rm GUT} - \Delta_{\rm CPT}$, INO is sensitive to $\Delta_{\rm CPT}/\Delta_{\rm GUT} \sim 1\%$