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Motivation : As inputs for the determination of the energy and
direction of atmospheric neutrinos interacting with iron nuclei in the
ICAL detector via charged current (CC) and neutral current (NC)
channels.

CC interactions :

νl +N → l− +X
νl +N → l+ +X

NC interactions :

νl +N → νl +X
νl +N → νl +X

l = e, µ, τ
vl = neutrino of
flavour l
N = target nucleon
X = hadronic final
state

N X

lν l
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Figure 1: Charged current and neutral
current interactions of neutrino with
nucleons.



ICAL can’t distinguish individual hadrons.Only

a bunch of hits.
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Majority : pions → Study for single pions.

No:of hadron hits depends on plate thickness & hadron energy.

11 different thicknesses from 1.5cm,...,8cm.

Gaussian fit over estimates the width of the distribution at low
energies and higher thickness.
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Figure 2: Hit distributions for 3 GeV and 8 GeV pions in

(left) 6 cm and (right) 4cm iron, fitted with

gaussian.
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n̄(E) = n0

[

1− exp
(

− E
E0

)]

, where, n0 and E0 are constants.

E0 ≫ E in the range of energies of interest, E ≤ 15GeV . Hence

linearised by expanding the exponential: n̄(E)/n0 ≃ E/E0

∆n(E)/n̄(E) = σ/E , where, ∆n = width of the distribution ,

n̄(E) = mean number of hits obtained from the distribtution.

Parametrize σ(E)/E =
√

a2/E + b2 , where, a = stochastic

coefficient (dependent on absorber thickness ; has dimensions of√
E), b = a dimensionless constant. Ideal case : b = 0.

(σ/E)
2
= a2/E + b2 : easier to analyze since linear in 1/E.

Analysis in [2 GeV - 5GeV) ; [5GeV - 15GeV] ; [2GeV - 15GeV]

Thickness dependence : a(t) = p0t
p1 + p2 , where

p0 = a constant ,
p1 = power giving the thickness dependence ,

p2 = residual resolution
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Figure 3: a as a function of t (cm) in various energy

ranges. p0 = constant, p1 = exponent which gives the

thickness dependence, p2 = residual resolution
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The exponent p1 in the range [5GeV - 15GeV] =
0.701±0.002=p0t

p1 + p2=α+ p2

Constant term p2 in this range = 0.592±0.016 → dominant
residual resolution.

Optimisation : a improves with decreasing thickness, but very
slightly. α5.6cm = 0.276

t (cm) αt ∆α = α5.6cm − αt

4 0.221 0.055
2.5 0.162 0.114
1.5 0.167 0.167

5.6cm → say 2.5cm : increase in no:of layers, and hence no:of
RPCs and other components.

Thickness ↓ , cost ↑ and not much gain in resolution from hadron
point of view.

Hence 4cm to 5.6cm are optimum thicknesses.
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Hadron angle resolution

For 5.6cm Fe only.

Single, double pions at different θs with φ smeared fully; fixed θ -
fixed φ, hadrons from neutrino events.

Direction reconstruction using hit information :

1 Centroid technique
2 Orientation matrix method
3 Raw hit method with timing

Centroid method : for each simulated event, the vertex
position and the positions of hits forming the shower are taken
and the centroid of the shower is found by summing over the
position vectors (w.r.to the vertex) of each hit in that event →
reconstructed shower direction.

Orientation matrix method : Orientation matrix T for a
collection of unit vectors (xi, yi, zi), i=1,...,n



Orientation matrix method...

T =





Σx2
i

Σxiyi Σxizi
Σxiyi Σy2

i
Σyizi

Σxizi Σyizi Σz2
i





Eigen analysis of this symmetric matrix → idea of the shape of the
underlying distribution. If a unit mass is placed at each point,
moment of inertia of the n points about an arbitrary axis (x0, y0, z0)
is,

n−
(

x0 y0 z0
)

T





x0

y0
z0





The variation of moment of inertia gives information about the

scatter of the points as the choice of axis varies. The axis about which

the moment is least → principal axis → shower direction.

Distributions of the sine of the error angles (sin∆θ) fitted with the

function : ∆θ = A∆θ exp(−B∆θ) , where, A and B parameters.
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Figure 4: ∆θ distribution obtained using the two techniques

at 2GeV, 3Gev, 6GeV and 10GeV (clockwise from top-left).
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Raw hits and timing method

No vertex position is needed. Only hit information in X-Z and
Y-Z plane separately. Time window of ≤50 ns.

Average x and y positions in the ith layer of an event are found
separately.

Fitted with straight lines x = m′

xz + c1 and y = m′

yz + c2
separately in the X-Z and Y-Z planes. Inverses of slopes m′

x and
m′

y → reconstruct the direction. mx and my.

Using polar co-ordinates, θ and φ can be reconstructed as :
tanφ = tanω/tanλ & tanθ = 1/cotθ , where , ω = angle made by
a line with the X axis, in the XZ plane and λ = angle made by a
line with the Y axis in the YZ plane.

Timing information → to break the quadrant degeneracy of mx

and my.

All events UP in time → θ in 1st quadrant.
All events DOWN in time → θ in 2nd quadrant.
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Figure 5: θ resolution in degrees for (a) single pions and

(b) double pions with lmin = 2 cut



Single and double pions in a fixed direction (fixed θ - fixed φ) :
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Figure 6: Comparison of θ resolution at 30◦ for (left)

single pions and (right) double pions propagated in the

fixed direction θ = 30◦ and φ = 30◦ with lmin = 2 cut.
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Hadrons are reconstructed as showers in the detector since they
don’t leave clean tracks like muons to which ICAL is most
sensitive.

Even then it is possible to extract their direction information
from hit pattern.

Resolution worsens in the realistic case of several hadrons in the
final state since multiple hadrons may travel in different
drections thus giving hits in a larger region (larger spread).
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