VietNus 2012: Towards CP Violation in Neutrino Oscillations Qui Nhon, December 2012

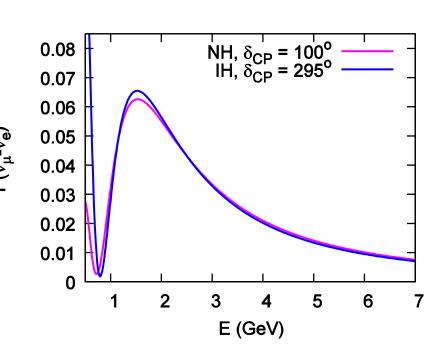
India-based Neutrino Observatory (INO)

...an indirect boost to CP sensitivity

Outline

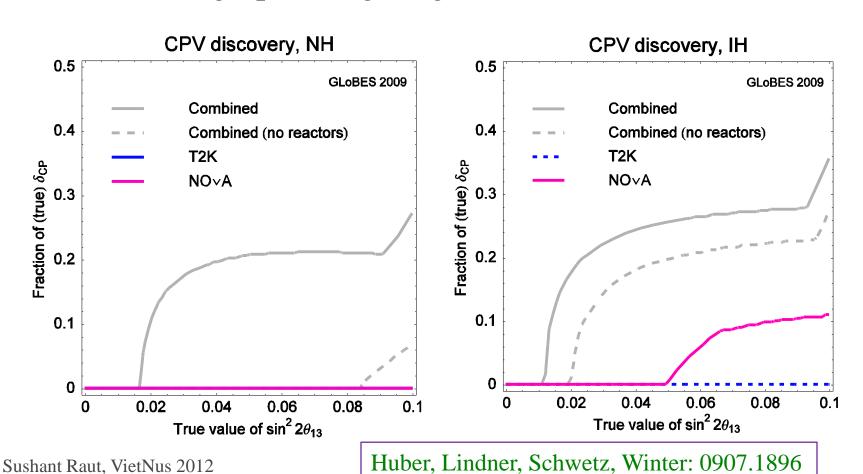
- Motivation: INO $\leftarrow \rightarrow$ CP Violation
 - Requirements for measuring CP
- INO: Details
 - Physics aims
 - Detector and simulations
 - Current status
- INO: Physics potential
 - Precision measurements
 - Mass hierarchy measurement
 - Octant measurement
 - Towards CP measurement?
- Summary

Outline

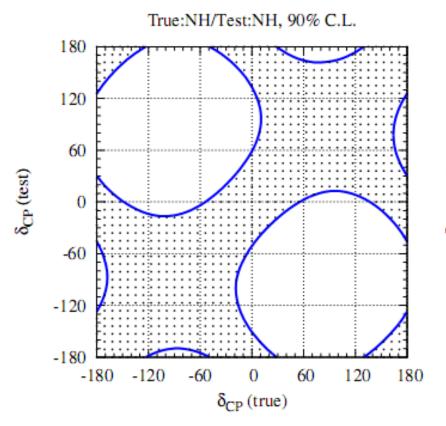

- Motivation: INO $\leftarrow \rightarrow$ CP Violation
 - Requirements for measuring CP
- INO: Details
 - Physics aims
 - Detector and simulations
 - Current status
- INO: Physics potential
 - Precision measurements
 - Mass hierarchy measurement
 - Octant measurement
 - Towards CP measurement?
- Summary

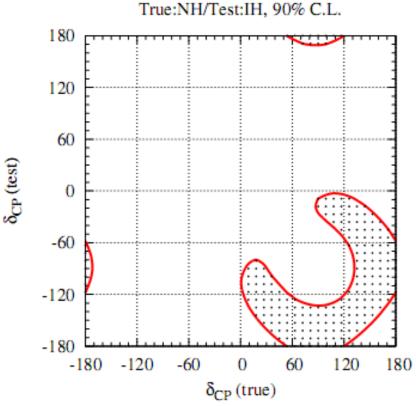
Q: Why should we discuss atmospheric neutrinos at a workshop on CP Violation?

Q: Why should we discuss atmospheric neutrinos at a workshop on CP Violation?

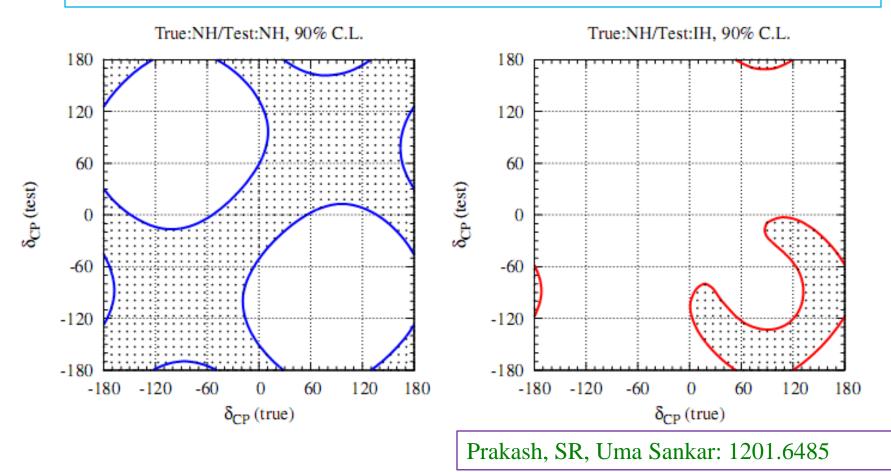

- Currently unknown oscillation parameters:
 - Mass hierarchy
 - δ_{CP}
 - Octant of θ_{23}
- Hierarchy- δ_{CP} degeneracy:

$$P(NH, \delta_{CP}) = P(IH, \delta_{CP}')$$

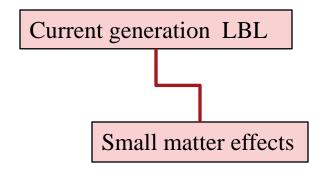



Towards CPV discovery

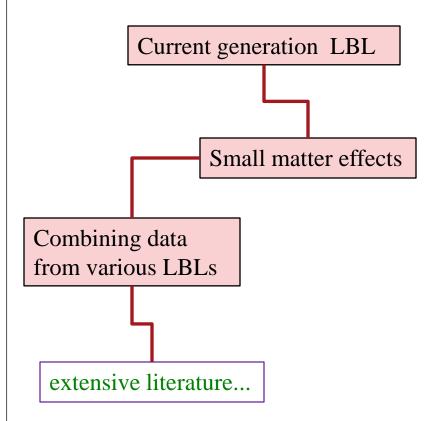
Q: What can we say about δ_{CP} , using data from existing/upcoming long baseline facilities?


Measuring δ_{CP}

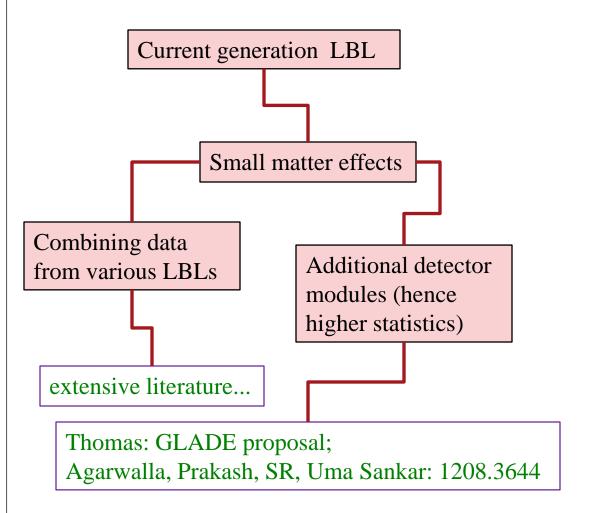
Prakash, SR, Uma Sankar: 1201.6485


Measuring δ_{CP}

Need to know the hierarchy first, in order to measure δ_{CP} !


Lifting the hierarchy- δ_{CP} degeneracy

(with current/upcoming facilities)


Lifting the hierarchy- δ_{CP} degeneracy

(with current/upcoming facilities)


Lifting the hierarchy- δ_{CP} degeneracy

(with current/upcoming facilities)

Lifting the hierarchy- δ_{CP} degeneracy

(with current/upcoming facilities)

Atmospheric neutrinos

Larger matter effects

Wide range of L,E

INO

Gandhi et al: 0707.1723;

Blennow, Schwetz: 1203.3388;

Ghosh, Thakore, Choubey: 1212.1305

Agarwalla, Prakash, SR, Uma Sankar: 1208.3644

Outline

- Motivation: INO ←→ CP Violation
 - Requirements for measuring CP
- INO: Details
 - Physics aims
 - Detector and simulations
 - Current status
- INO: Physics potential
 - Precision measurements
 - Mass hierarchy measurement
 - Octant measurement
 - Towards CP measurement?
- Summary

INO: India-based Neutrino Observatory

- Ahmedabad: Physical Research Lab
- **Aligarh**: Aligarh Muslim Univ
- Allahabad: Harish-Chandra Research Inst
- Calicut: Univ of Calicut
- **Chandigarh**: Panjab Univ
- Chennai: IIT Madras, Inst of Mathematical Sciences
- **Delhi**: Univ of Delhi
- **Guwahati**: IIT Guwahati
- **Hawaii**: Univ of Hawaii
- **Indore**: IIT Indore
- **Jammu**: Univ of Jammu

- **Kalpakkam**: Indira Gandhi Centre for Atomic Research
- Kolkata: Ramakrishna Mission Vivekananda Univ, Saha Inst of Nuclear Physics, Variable Energy Cyclotron Centre, Univ of Calcutta
- Lucknow: Lucknow Univ
- Madurai: American College
- Mumbai: Bhabha Atomic Research Centre, IIT Bombay, Tata Inst of Fundamental Research
- **Mysore**: Univ of Mysore
- **Sambalpur**: Sambalpur Univ
- **Srinagar**: Univ of Kashmir
- Varanasi: Banaras Hindu Univ

Collaborators are welcome!

http://www.ino.tifr.res.in/ino/

Physics Aims of INO

- Detection of atmospheric neutrinos: wide range of L,E
- Iron Calorimeter (ICAL) with charge-id (magnetization), for nu-antinu separation
- Precision measurement of atmospheric parameters
- Mass hierarchy determination
- NSI, CPT violation, NDBD, ultra high energy muons, etc.
- Stage I: Atmospheric neutrino observatory
- Stage II: Detector for a future long baseline experiment??

Location of INO

Bodi West Hills, Pottipuram village, Theni district, Tamil Nadu state (9° 58' N, 77° 16' E)

120 km west of Madurai town

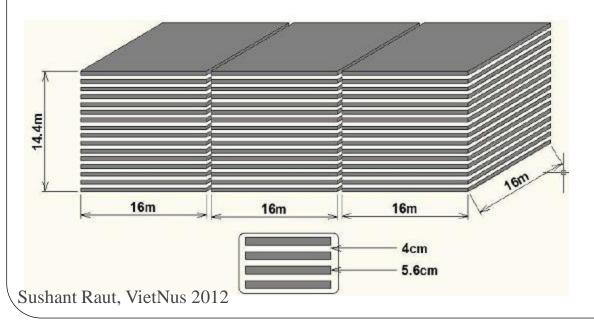
The INO site

- Vertical cover :1289 m; all-round cover: ~1000 m
- Four caverns: Accessible through a 2 km tunnel
- Cavern 1: 50 kt ICAL (space for 100 kt)
- Caverns 2-4: Available for other experiments: NDBD, DM, etc.
- Underground cavern and tunnel, small surface lab at Pottipuram (outside the reserve forest boundary)

Construction updates

 INO project approved 'in principle' by Indian funding agencies

Environment and forest clearance obtained


- Tendering for site preparation in progress
- Pre-project works (approach roads, water supply, electricity connections) have begun

Detector factsheet

No. of modules	3
Module dimensions	16m×16m×14.5m
Detector dimensions	48.4m × 16m × 14.5m
No. of layers	150
Iron plate thickness	56mm
Gap for RPC trays	4omm
Magnetic field	1.3Tesla
RPC dimensions	1,950mm×1,840mm×24mm
Readout strip pitch	3 omm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	192
No. of RPC units	28,800 (97,505m²)
No. of readout strips	3,686,400

The ICAL Detector

- Iron plates (target mass) separated by glass RPCs (active detector): 150 layers
- Magnetization: Charge-id through bending of muons
- Directionality through tracking and timing (1 ns resolution)

- Modular structure, for ease of construction and modification
- Front end electronics chip developed at BARC Electronics Division

Detector updates

- Timing resolution, noise, tracking, etc of RPC being tested with cosmic muons
- RPC R&D almost complete. 2m x 2m RPCs being fabricated by the industry. 40 kt prototype tested in Kolkata. Both glass and bakelite RPCs tested.
- Electronics: Design and prototyping going on, ASIC front end being tested in RPC lab
- Magnetization: Prototype magnet running at VECC

Simulation framework

Simulation Framework

GEANT4

Neutrino Event Generation

Generates particles that result from a random interaction of a neutrino with matter using theoretical models.

Output:

- i) Reaction Channel
- ii) Vertex Information
- lil) Energy & Momentum of all Particles

Event Simulation

A + B + ... through RPCs + Mag.Field

Simulate propagation of particles through the detector (RPCs + Magnetic Field)

Output:

- i) x,y,z,t of the particles at their interaction point in detector
 - ii) Energy deposited
 - iii) Momentum information

Event Digitisation

(x,y,z,t) of A + B + ... + noise + detector efficiency

Add detector efficiency and noise to the hits

Output:

 Digitised output of the previous stage (simulation)

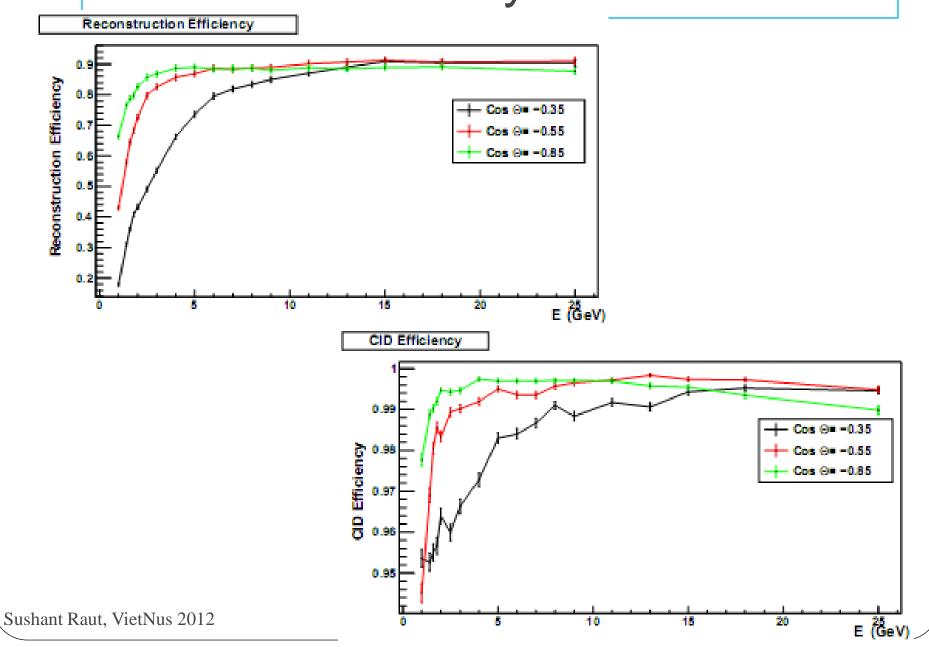
Event Reconstruction

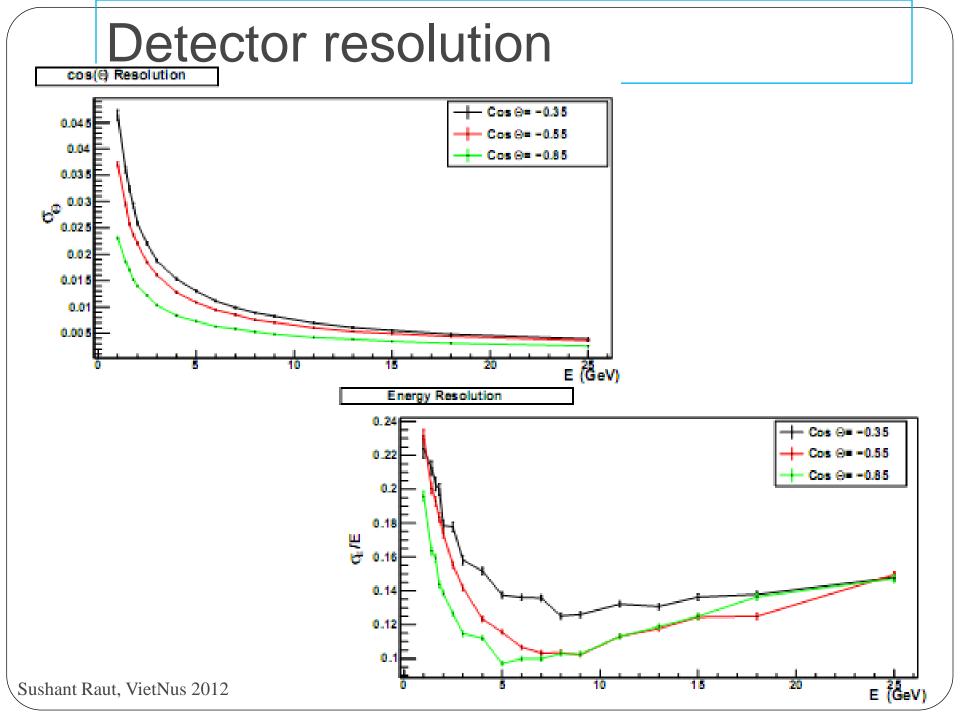
$$(E,p)$$
 of $v + X = (E,p)$ of $A + B + ...$

Fit the tracks of A + B + ... to get their energy and

momentum.

Output:

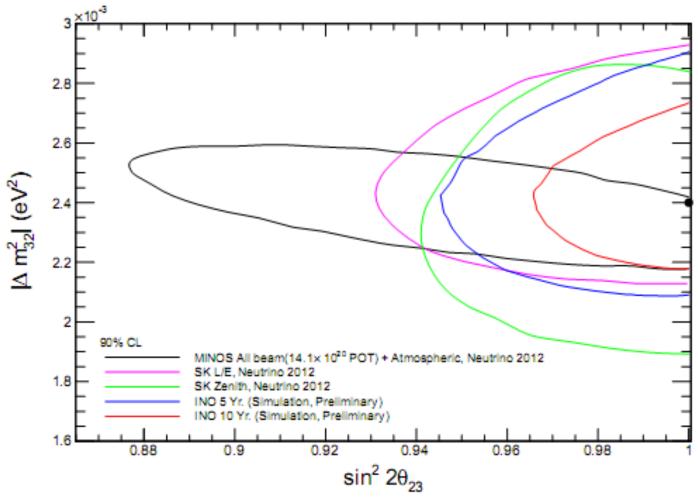

 i) Energy & Momentum of the initial neutrino


Simulation Updates

- Inhomogenous magnetic field map implemented
- Muon reconstruction: Energy and direction resolutions available, but efforts are on to improve them
- Hadron reconstruction: Energy resolutions available

 Neutrino energy resolution using muon and hadron momenta

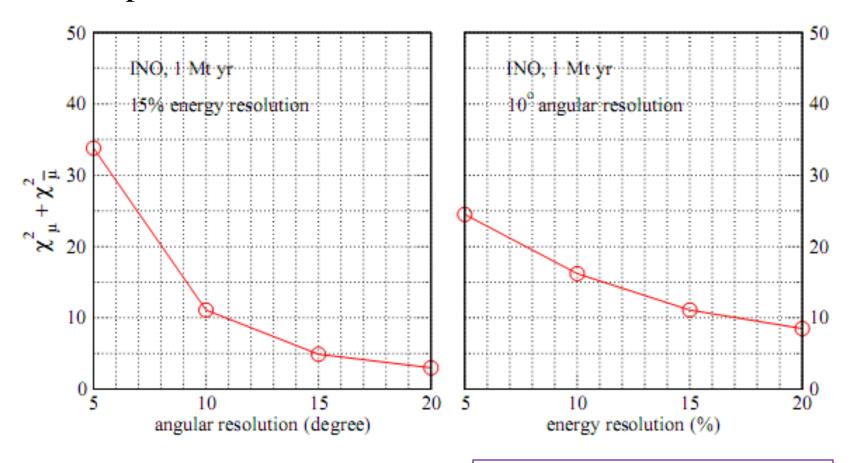
Detector efficiency


More work required

- Detector effects
 - Improving sensitivity to electrons
 - Improving angular resolution of neutrinos by more precise direction reconstruction for hadrons
 - Lowering the energy threshold
 - Improving resolution/efficiency for horizontal events
- Other systematic effects:
 - Flux normalization uncertainty
 - Flux tilt uncertainty
 - Cross-section uncertainty

Outline

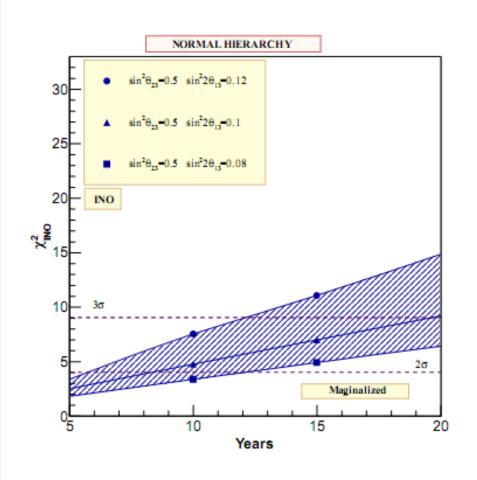
- Motivation: INO ←→ CP Violation
 - Requirements for measuring CP
- INO: Details
 - Physics aims
 - Detector and simulations
 - Current status
- INO: Physics potential
 - Precision measurements
 - Mass hierarchy measurement
 - Octant measurement
 - Towards CP measurement?
- Summary


Precision measurements

(with projected priors on atmospheric parameters)

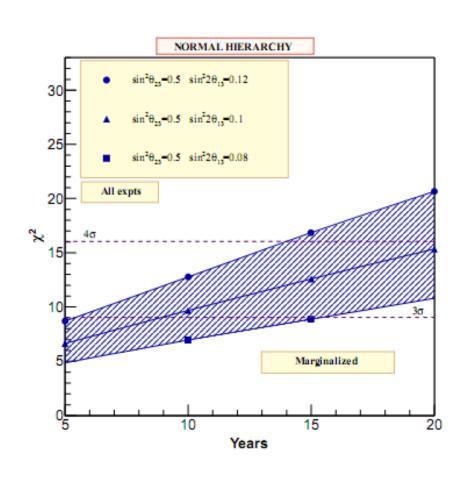
Mass hierarchy determination

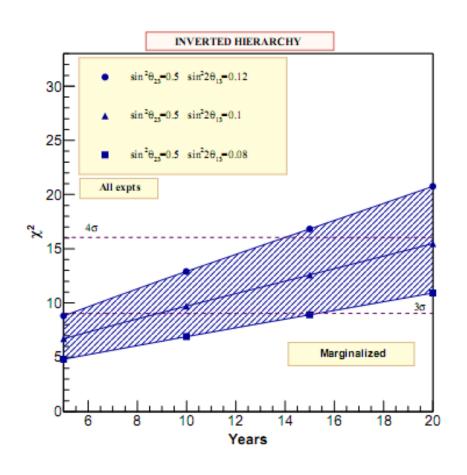
Impact of resolutions

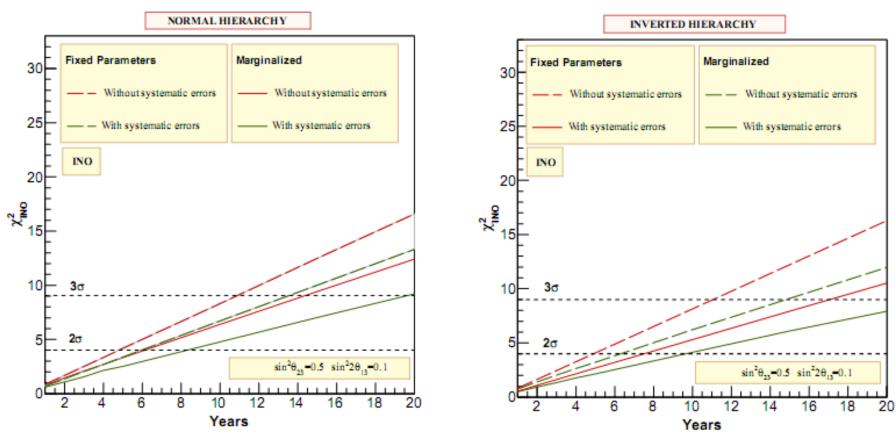


Gandhi et al: 0707.1723;

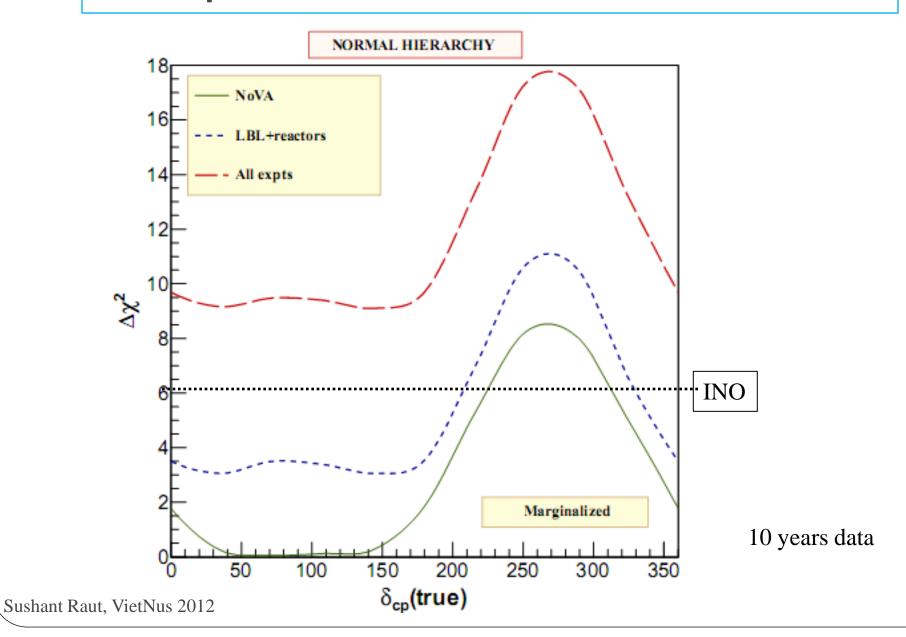
Also see


Petcov, Schwetz: hep-ph/0511277


Mass hierarchy timeline: INO


Mass hierarchy timeline: INO+others

Mass hierarchy determination


Impact of systematics and priors

20-30% drop in sensitivity due to systematics

Further 20-30% drop due to parameter uncertainties

Comparison & Combination

Outline

- Motivation: INO ←→ CP Violation
 - Requirements for measuring CP
- INO: Details
 - Physics aims
 - Detector and simulations
 - Current status
- INO: Physics potential
 - Precision measurements
 - Mass hierarchy measurement
 - Octant measurement
 - Towards CP measurement?
- Summary

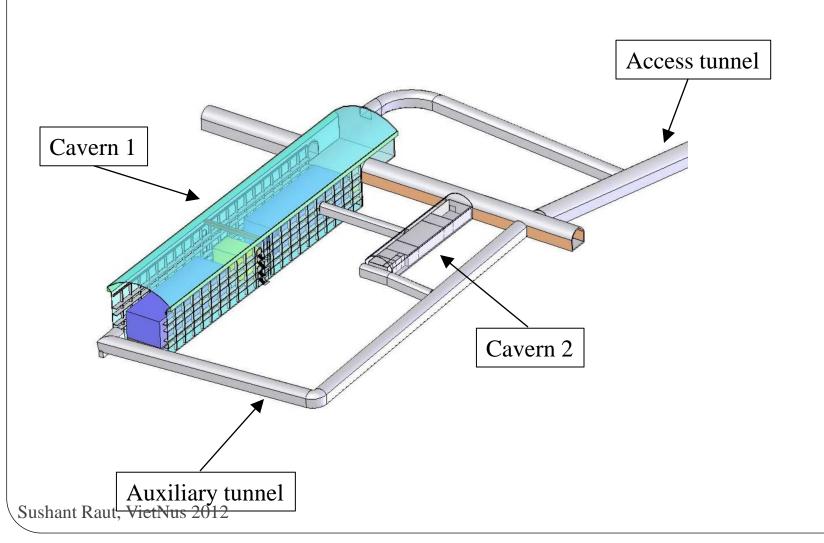
Q: Why should we discuss atmospheric neutrinos at a workshop on CP Violation?

Q: Why should we discuss atmospheric neutrinos at a workshop on CP Violation?

- Measuring δ_{CP} requires knowledge of the hierarchy
- With current LBL experiments, hierarchy sensitivity depends significantly on the value of δ_{CP}
- Atmospheric neutrino experiments (in particular INO) can determine hierarchy independently of δ_{CP}
- Combining with other experiments improves the sensitivity

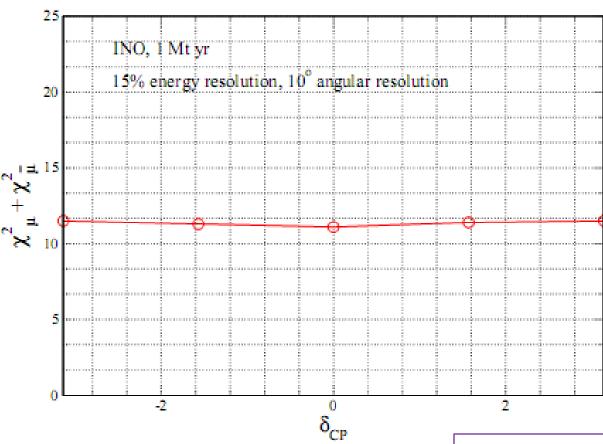
Summary: INO Experiment

- Land acquired, civil construction to start soon
- RPC testing going on
- Improvements expected in energy and angular resolutions through simulations
- Data taking expected to start around 2017.

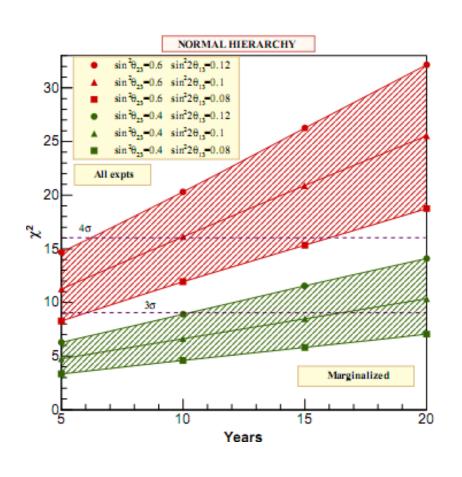

THANK YOU

Thanks to Sandhya Choubey, Brajesh Choudhary, Amol Dighe, Anushree Ghosh, Pomita Ghoshal, Srubabati Goswami, Naba Mondal, M.V.N.Murthy and Tarak Thakore for their inputs.

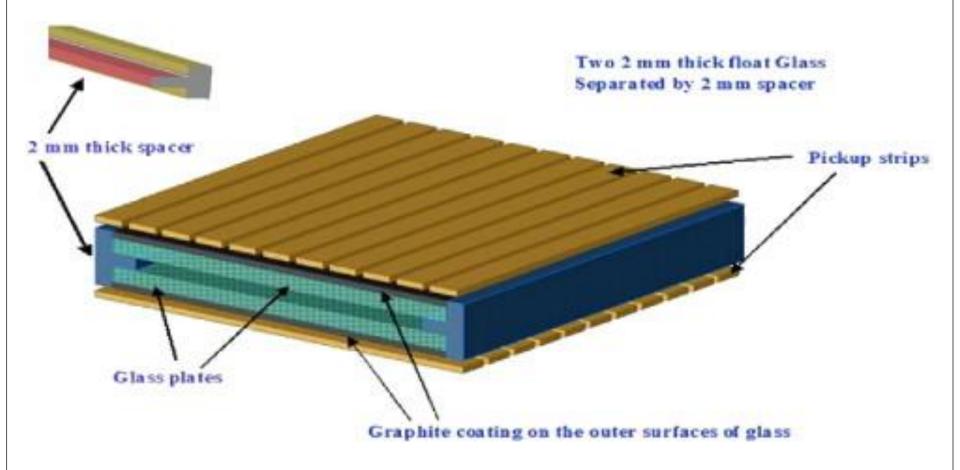
BACKUP SLIDES



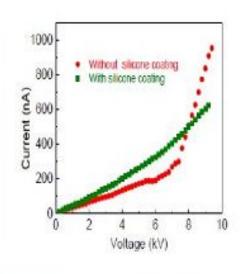
INO Cavern

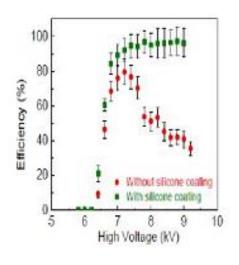

Mass hierarchy determination

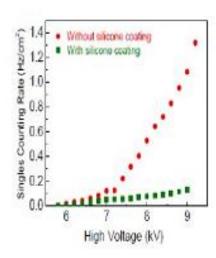
• Impact of δ_{CP}


Gandhi et al: 0707.1723

Mass hierarchy timeline: INO+others

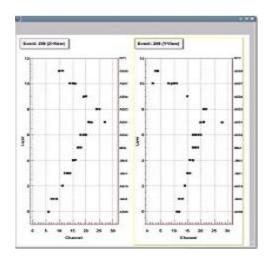


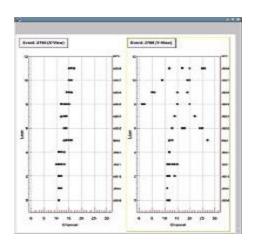

RPC



Bakelite RPC R&D

- · SINP and VECC groups in Kolkata developing bakelite RPCs in streamer mode
- · Inner surface of bakelite coated with PDMS (silicone) to make the surface smooth
- Efficiency plateau over 96% obtained with reduced noise rate and long term stability
- INO-ICAL being modular, can use both, glass and/or bakelite RPCs





Dighe: NuFact 2012

Testing RPCs using cosmic rays

- Timing resolution
- Pulse height resolution
- Tracking capability for muons and hadrons
- Noise rate

INO Timeline

SN	Description of work	2	01	1-1	2	2012-13				2013-14			2014-15				2	01:	5-1	6	20	5-17	7	
	Civil work at Pottipuram																							
1	Land acquisition and pre-project work	•	-	•																				
2	Architectural and Engineering consultancy	4	•		•																			
3	Tendering and award of contracts			4	٠																			
4	Mining of access portal				•	•	•																	
5	Excavation of tunnel						-	•			+	-	-								\Box		\Box	
6	Excavation of caverns												4		_			•					\Box	
7	Installation of services, cranes, lifts etc.																4	\vdash	-					
8	Civil work for magnet support bed																		4					
9	Surface facilities				,	+					+				-								\Box	
	Magnet																							
10	Procurement of steel plates									•	+	+	•											
11	Machining job for steel plates												4					•					\Box	
12	Transportation of machined plates at site																	4	-					
13	Procurement of copper coils															•			-					
14	Assembly/erection of magnet (3 modules)																			•	\Box	\exists	-	
	RPC																							
15	Finalization of all design details, tendering	4			-	+																		
16	Procurement of components			4		•																	\Box	
17	Fabrication and assembly of 30000 pcs						•	\exists			\pm							•						
18	Transportation to site and tests															4					-			
19	Procurement of electronics, gas handling							-	•		+	\vdash			+									
20	Installation and commissioning																			-	•	\dashv	\dashv	>