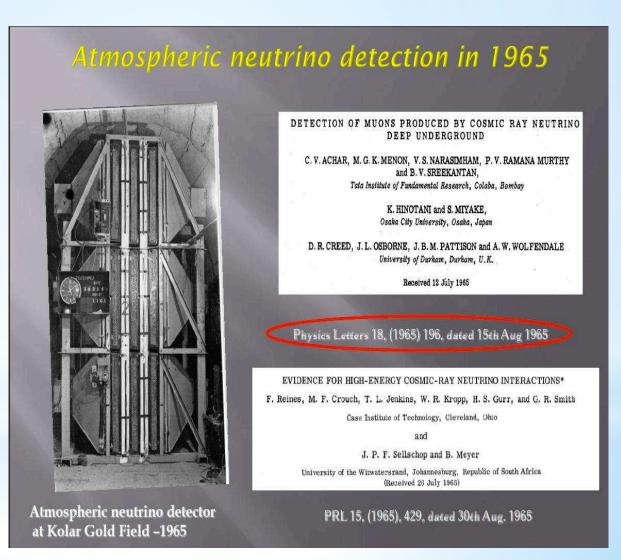
Status of the India-based Neutrino Observatory

Sanjib Kumar Agarwalla

Sanjib.Agarwalla@ific.uv.es

IFIC/CSIC, University of Valencia, Spain (On behalf of the INO collaboration) http://www.ino.tifr.res.in/ino/

Dedicated to the memory of Ramaswami (Raju) S. Raghavan 1937 - 2011


He was one of the first persons to encourage setting up INO and continued to take deep interest in the progress of the project

INO

An Old Saga of Underground Laboratory in India

KGF: Deepest underground lab in world till 1992 > 6500 MWE

- In 1965, at KGF at a depth of 2.3km, first atmospheric neutrino was observed by the TIFR-Osaka-Durham group
- During early 80s dedicated detectors were setup at KGF by TIFR-Osaka collaboration to look for proton decay

India Based Neutrino Observatory

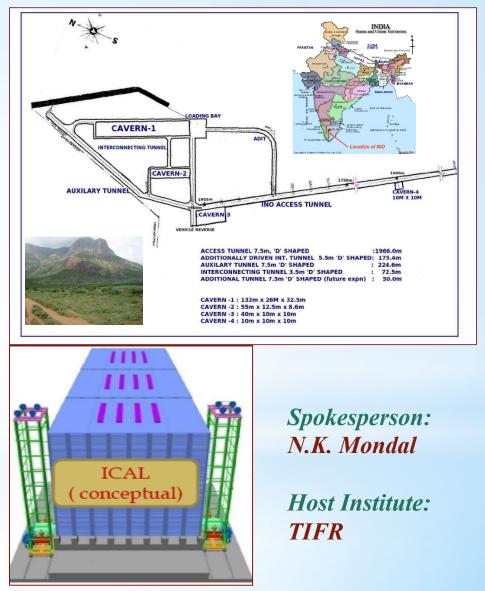
- A multi-institutional attempt to build a world-class underground facility to study fundamental issues in science with special emphasis being on neutrinos
- With ~1 km all-round rock cover accessed through a 2 km long tunnel.
 A large and several smaller caverns to pursue many experimental programs
- Complementary to ongoing efforts worldwide to explore neutrino properties
- A mega-science project (~250 M\$) in India, jointly funded (50:50) by the Department of Atomic Energy and the Department of Science and Technology
- One of the largest basic science projects in India, involving nearly 100 scientists from 25 research institutes and Universities all over India
- INO facility is available for international community for setting up experiments like Neutrino-less Double Beta Decay, Dark Matter searches

Recent Breakthroughs : Big News

2011: A very productive year for INO reaching several milestones

✓ Environment & Forest clearances obtained in June

 ✓ Just few weeks back, Tamil Nadu Govt. has approved the request to allocate 26 Hectares of land at the Pottipuram village in Theni District to build the underground lab


 ✓ We expect to get the approval of 12 Hectares of land at Madurai soon to establish the INO centre – The National Centre for High Energy Physics (NCHEP)

Now, finally we are all set to move ahead with the INO project


Approved projects under INO

- To come up with an underground lab and surface facilities near Pottipuram village in Theni district of Tamil Nadu.
- To build massive 50 kt magnetized Iron calorimeter (ICAL) detector to study properties of neutrinos.
- Construction of the INO centre: The NCHEP at Madurai
- Human Resource Development (INO Graduate Training Program)
- Completely in-house Detector R&D with substantial INO-Industry interface Projected Time Frame (2011-2017)

Location of INO & Unique Features

> Transport:

Flat terrain with good access from major roads

Geotechnical Issues:

Good rock quality, Cavern set in massive Charnockite under the 1589 m peak, Vertical cover approx. 1289 m, Tunnel length 1.91 km

Environmental Issues: Portal set outside the RF boundary, no disturbance to the forest. Surface facilities not on Forest Land. No clearing of forest

> Weather :

Warm, low rainfall area, low humidity throughout the year Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011

5/23

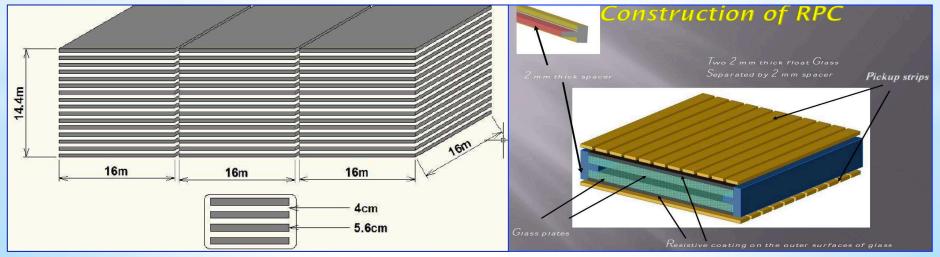
INO Phase 1

Study Atmospheric neutrinos with a wide range of L/E

What do we want to achieve?

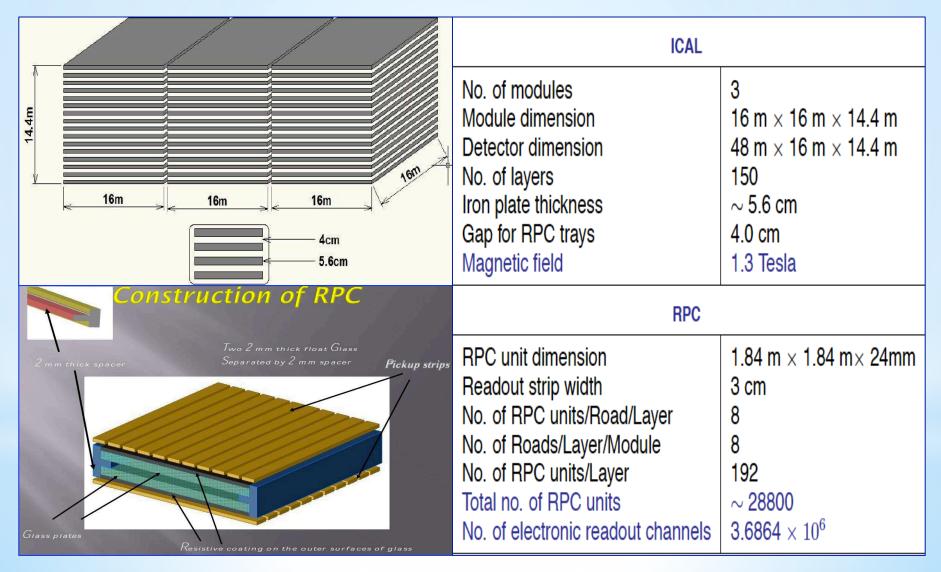
- Reconfirm neutrino oscillations using neutrinos and anti-neutrinos separately
- * Improved precision of oscillation parameters ($|\Delta m_{31}^2|$, $\sin^2 2\theta_{23}$)
- ***** Determine the sign of Δm_{31}^2 using matter effects via charge discrimination
- ***** Measure the deviation of θ_{23} from its maximal value and its octant
- ***** Test bed for various new physics like NSI, CPT violation, long range forces
- ***** Detect Ultra high energy Neutrinos and cosmic Muons

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 6/23


What kind of Detector do we need?

- Should have large target mass (50 100 Kton)
- Good tracking and Energy resolution (tracking calorimeter)
- Good directionality for up/down discrimination (nano-second time resolution)
- Charge identification (need to have uniform, homogeneous magnetic field)
- Ease of construction & Modularity
- Complementary to the other existing and proposed detectors

What is the ideal choice?

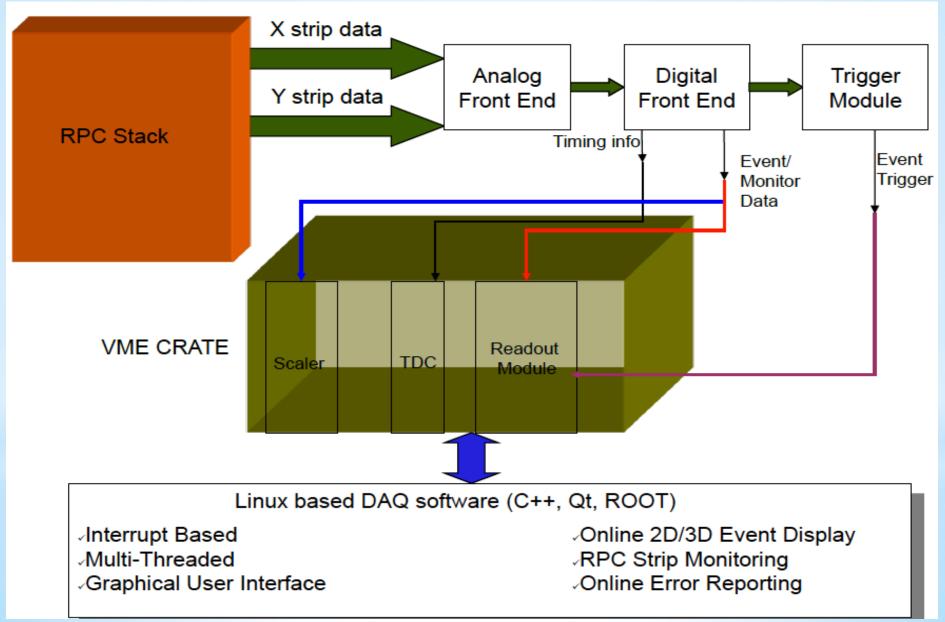

Magnetized iron (target mass): ICAL

RPC (active detector element)

Specifications of the ICAL Detector

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 8/23

Making of Glass RPCs at TIFR

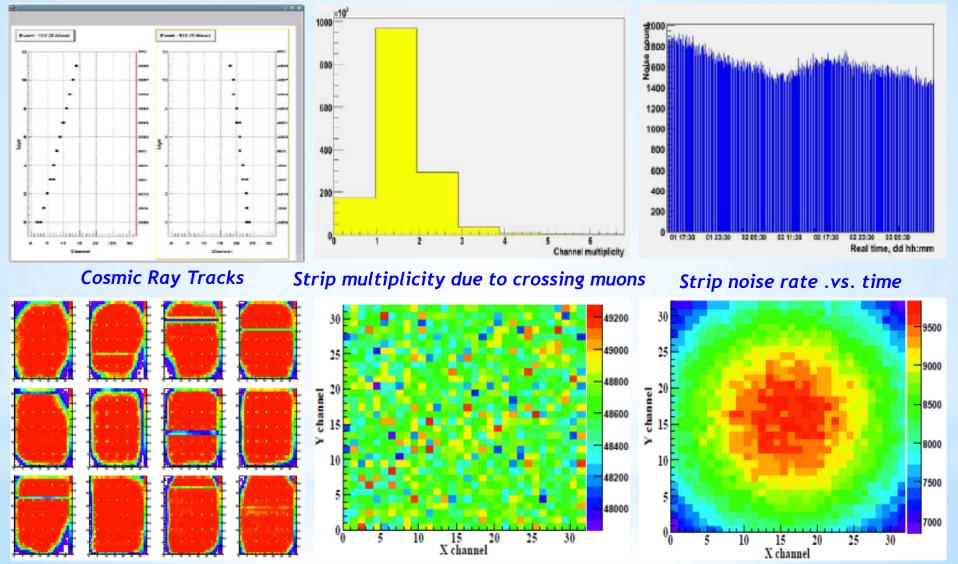


> 12 glass RPCs of 1m × 1m developed, tested for long in avalanche mode

Recently 5 glass RPCs of 2m × 2m successfully assembled and tested

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 9/23

VME Based DAQ Setup



Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011

INO

Performance of RPC using Cosmic Muons

Cosmic muon imaging

Hit distribution in top RPCs

Hit distribution in bottom RPCs

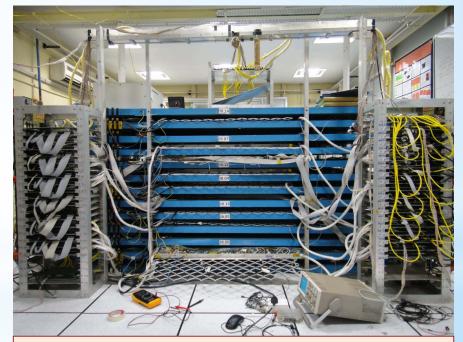
Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 11/23

Efforts at VECC & SINP (Kolkata)

Bakelite RPCs being developed, operating in streamer mode, innner surface coated with PDMS (silicone) for smooth surface, efficiency plateau over 96% with reduced noise rate and long term stability

> ICAL@INO being modular in size, can use both glass as well as bakelite RPCs

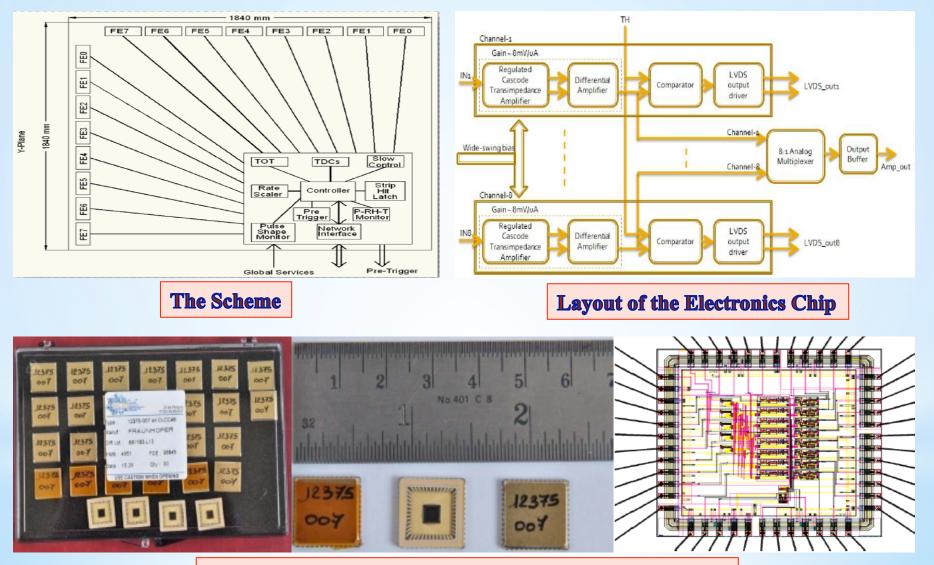
13 layers of soft iron Each Iron Plate: 2.48m x 2.17m x 0.05m


12 layers of 1m × 1m RPCs 8 glass RPCs and 4 Bakelite RPCs

Total of 4 coils, each having 5 turns perpendicular to the plane of the Fe (1.6 Tesla)

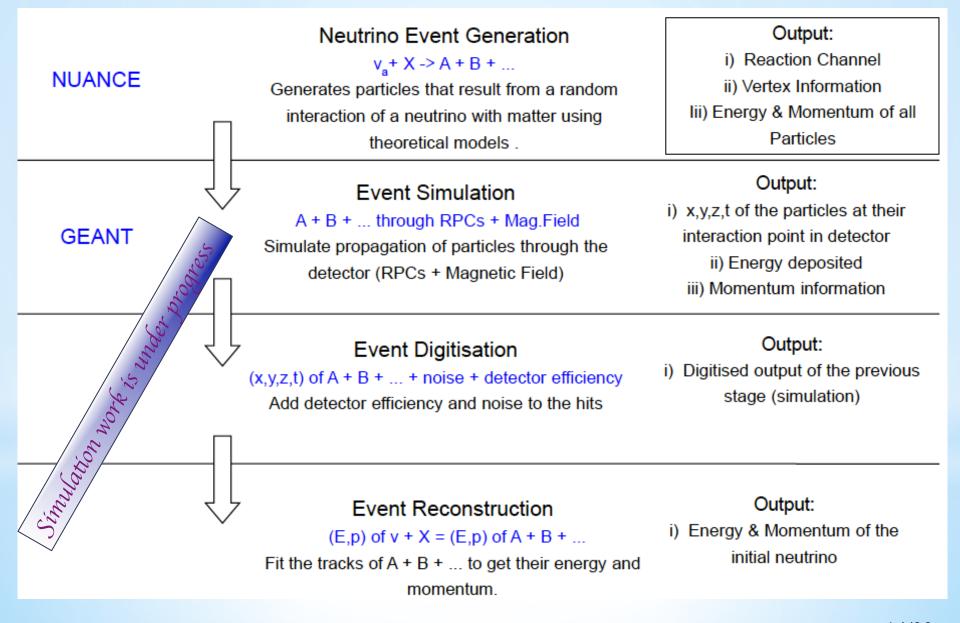
800 channels of preamp timing discriminators for avalanche RPCs

Designed to study the working behavior of RPCs together with the front end electronics in presence of magnetic field



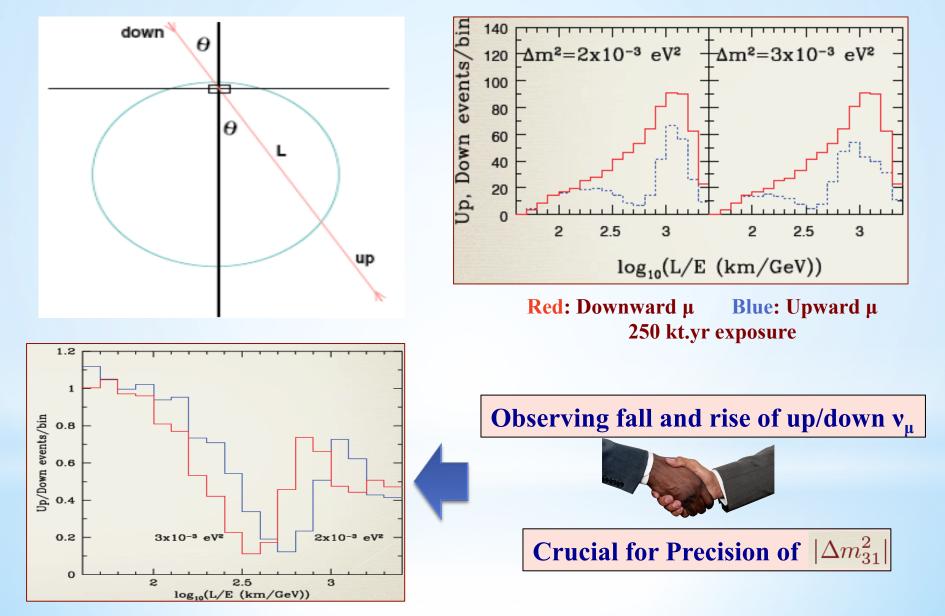
INC

ICAL@INO Prototype Detector ~ 50 tons Total Height 1.302 m


ICAL Front End Electronics

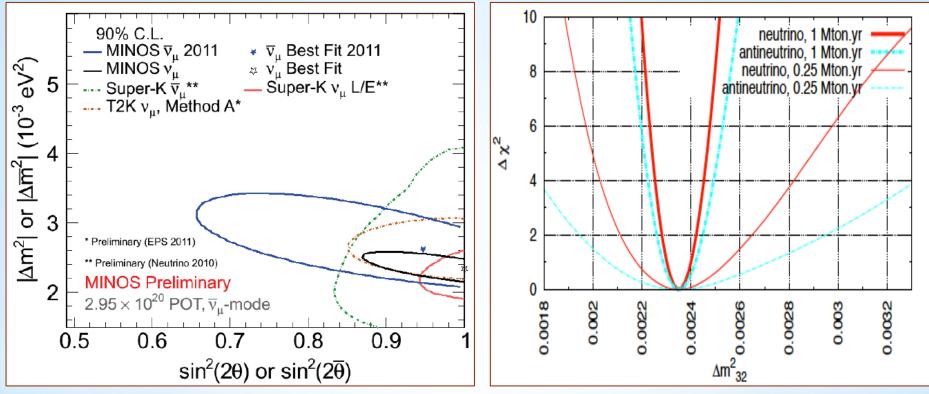
Electronics Chip developed at BARC Electronics division

Detector Simulation Strategy



Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 14/23

Reconfirmation of L/E Dip

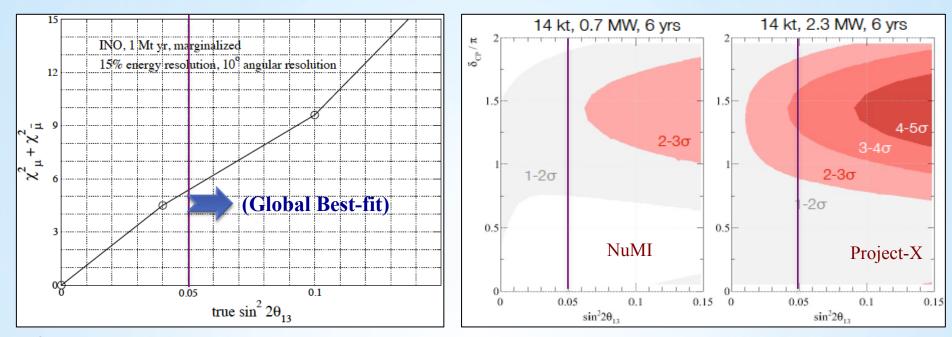


Precision of atmospheric oscillation parameters

θ_{23}	CL	Source	$\Delta m_{32}^2 (10^{-3} \mathrm{eV}^2)$	CL	Source					
$42.9^{\circ}_{-2.8^{\circ}}^{+4.1^{\circ}}$	1σ	global-fit[2]	$-2.36 \pm 0.07 (\pm 0.36)$) 1 (3) σ	global-fit [2]					
$35.7^\circ-54^\circ$	3σ	global-fit[2]	$+2.47 \pm 0.12 (\pm 0.37)$	c) 1 (3)σ	global-fit [2]					
$45^{\circ}{}^{+10^{\circ}}_{-7.8^{\circ}}$	99%	SK [4]	$2.5^{+0.52}_{-0.60}$	99%	SK 3ν [4]					
$45^{\circ} \pm 9^{\circ}$	90%	MINOS (ν) [4]	$2.35_{-0.08}^{+0.11}$	90%	MINOS ν [5]					
$34^{\circ}_{-4^{\circ}}^{+6^{\circ}}$ or $56^{\circ}_{-4^{\circ}}^{+6^{\circ}}$	$^{4^{\circ}}_{-6^{\circ}}$ 90%	MINOS $(\bar{\nu})$ [5]	$3.36\substack{+0.45\\-0.40}$	90%	MINOS $\bar{\nu}$ [5]					
$39^\circ - 51^\circ$	2σ	T2K [32]	2.5 ± 0.04	2σ	T2K [32]					
$36^\circ-54^\circ$	2σ	NO νA [32]	$2.5\substack{+0.07 \\ -0.04}$	2σ	$NO\nu A$ [32]					
$40^\circ-50^\circ$	2σ I	NO (1 Mton·yr)	2.5 ± 0.07	2σ II	NO (1 Mton·yr)					
[2]: 1001.4524; [4]: hep-ex/0604011 [5]: 1103.0340; [32]: 0412133 See also, Choubey & Roy, hep-ph/05091										
Imp	rovement	t on the current p	precision might not	be remarl	kable					
			2							
Defi	initely the	e information wil	l be complementary	v to other	expts					

INO

Can we resolve MINOS anomaly?


Samanta & Smírnov, 1012.0360

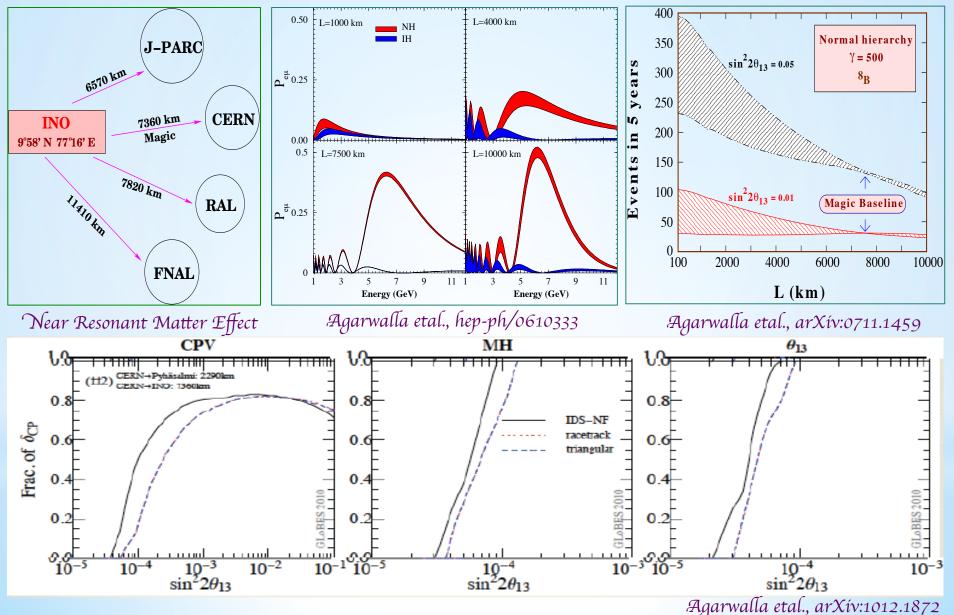
Charge Identification of ICAL is the key to have independent measurement of Atmospheric mass splitting with neutrinos & anti-neutrinos

MINOS Anomaly can be tested at > 3 sigma C.L.

Mass Hierarchy: ICAL@INO .vs. NOvA

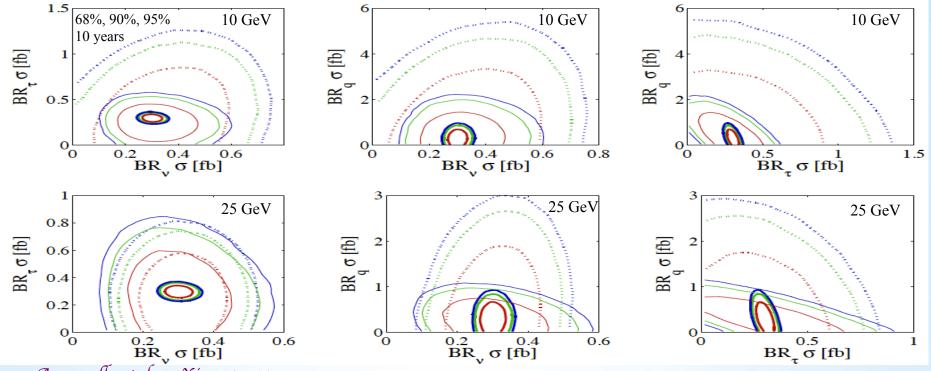
R. Gandhí etal., 0707.1723, Samanta 0907.3540 M. Messíer, Intensíty Frontier workshop (24th Oct, '11) (see also: Indumathí etal, hep-ph/0407336)

- \blacktriangleright Large matter effects in v_{μ} survival prob
- $\blacktriangleright L = 6000 9000 \text{ km}, E = 5 10 \text{ GeV}$
- Very mild dependence on CP phase
- > *MH* possible > 2 sigma if $\sin^2 2\theta_{13} = 0.05$


- Depends on Platinum Channel, P_{ue}
- \blacktriangleright L = 810 km, E ~2 GeV
- Highly dependent on CP phase
- ► MH at 1-2 sigma for ~50% favorable values of CP phase if $\sin^2 2\theta_{13} = 0.05$

Disclaimer: For both the expts, systematics are very crucial, more study needed

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 18/23


Physics with Beams (INO Phase 2)

INO

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 19/23

Indirect detection of Dark Matter with ICAL INO

Agarwalla etal., arXív:1105.4077

Experiment	DM mass	$BR_{\tau}\sigma$ [fb]	$BR_{\nu}\sigma$ [fb]	$\mathrm{BR}_q\sigma$ [fb]
MIND (100 kt)	$10 { m GeV}$	0.70	0.35	3.4
	$25~{ m GeV}$	0.34	0.15	1.7
LArTPC (34 kt)	$10 {\rm GeV}$	0.15	0.11	0.73
	$25~{ m GeV}$	0.16	0.10	0.21
GLACIER (100 kt)	$10~{ m GeV}$	$1.5\cdot 10^{-2}$	$6.4\cdot 10^{-3}$	0.25
	$25~{\rm GeV}$	$1.0\cdot 10^{-2}$	$5.2\cdot 10^{-3}$	0.19
Super-K data [5]	$10~{ m GeV}$	0.65	0.12	10
	$25~{ m GeV}$	0.45	0.19	5.0

Dotted line: 100 kt ICAL Thin line: 34 kt LAr Thick line: 100 kt LAr

DM particles gravitationally trapped inside the Sun may annihilate into SM particles, producing a flux of neutrinos

Energy & Angular resolution, crucial to suppress atmospheric background

Sensitivity to branching ratio × capture cross section at 90% C.L., 10 years data

Sanjib Kumar Agarwalla, NNN11, Zurich, Switzerland, 7th November, 2011 20/23

More Physics Motivations with ICAL@INO

- *Testing CPT violation* → hep-ph/0312027, arXív:0802.0121, arXív:1005.4851
- Constraining Sterile Neutrinos →

Impact of long range forces

Very High Energy Muons

- *Probing NSI* → hep-ph/0608034, arXív:1105.5936
 - → hep-ph/0310210, arXív:1001.5344

arXív:0709.0383, arXív:1108.4360

→ hep-ph/0512179

Intra-nuclear neutron-anti-neutron transformations inside an Fe nucleus. Signature will be the GeV energy pions. Existing SK limits can be improved using ICAL work under progress....

Profile of the atm. v flux at INO is very different from existing facility due to geomagnetic field, critical test for the calculation of the atmospheric neutrino flux M. Honda, NUINT 2011, work under progress....

ICAL can study the cosmic ray muon asymmetry reported by IceCube, since this detector can see the galactic center as well

work under progres....

INC

Where do we stand today?

- ♦ Full size RPCs (2m X 2m) are now being fabricated not only in our lab but also by the Industry
- First batch of ASIC front end designed by the INO electronics team and fabricated by Euro Practice IC Services being tested in the lab using RPC pulses
- ♦ Prototype magnet at VECC/SINP, Kolkata is running
- ♦ Graduate Training Program for the last three years within HBNI
- ♦ INO Site-Environment & Forest clearances obtained
- ♦ Just few weeks back, Tamil Nadu Govt. approved the request to allocate 26 Hectares of land at the Pottipuram village in Theni District to build the underground lab
- We expect to get the approval of 12 Hectares of land at Madurai soon to establish the INO centre – NCHEP

Short term goals and Future Roadmap

- Prepare the Physics White paper with detailed Detector Simulation
- **Build a large 8m X 8m -20 layer detector with final specifications**
- Magnet & coil design & fabrication, Industrial production of RPCs

Final Electronics and DAQ, Pre-project activities at site

CDI			0.1	1 1	2		0.1.0	. 1.	-		110	1.4		201	4 1			0.1	<u> </u>	~		21.4	17
SN			01	1-1	2	2	012	2-13	3	-20	13	-14	-	201	4-1	15	2	01:	5-1	6	20	<u>110</u>	5-17
	Civil work at Pottipuram													_		<u> </u>			<u> </u>		\square	\rightarrow	
1																						$ \rightarrow $	
2	Architectural and Engineering consultancy																						
3	Tendering and award of contracts			◄																			
4	Mining of access portal					◀	•																
5	Excavation of tunnel							•				_											
6	Excavation of caverns																	-					
7	Installation of services, cranes, lifts etc.																┥		-				
8	Civil work for magnet support bed																		-				
9	9 Surface facilities				-	┥										•							
	Magnet																						
10	Procurement of steel plates									•			-										
11	11 Machining job for steel plates													_				►					
12																		-					
13 Procurement of copper coils																-			-				
14	4 Assembly/erection of magnet (3 modules)																					-+	▶
	RPC																						
15	Finalization of all design details, tendering	◄			-	-																	
16	6 Procurement of components			◄		-																	
17	17 Fabrication and assembly of 30000 pcs						♦		_		_							-					
18	18 Transportation to site and tests															-							
19	9 Procurement of electronics, gas handling											_	_		-	-							
20	20 Installation and commissioning																			1	•	-+	

International collaboration most welcome

!! Stay Tuned for Exciting Discoveries at INO !!

