Nufact 08

Unraveling Neutrino Parameters with a Magical Beta-Beam at INO

Sanjib Kumar Agarwalla

Harish-Chandra Research Institute, Allahabad, India

work done in collaboration with

Sandhya Choubey and Amitava Raychaudhuri

Based on arXiv:0711.1459

See also hep-ph/0610333, arXiv:0802.3621 & arXiv:0804.3007

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.1/33

!!! Muchas Gracias !!!

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.2/33

Where do we stand today?

Parameter	Best fit	3 σ (1 d.o.f)
$\Delta m^2_{21} [10^{-5} eV^2]$	7.6	7.1–8.3
$ \Delta m^2_{31} $ [$10^{-3}~eV^2$]	2.4	2.0–2.8
$\sin^2 \theta_{12}$	0.32	0.26-0.40
$\sin^2 \theta_{23}$	0.50	0.34–0.67
$\sin^2 \theta_{13}$	0.007	\leq 0.050

M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, hep-ph/0405172v6

Best-fit values under 3 flavour scheme

Data from Solar + Atmospheric + Reactor (KamLAND and CHOOZ) + Accelerator (K2K and MINOS) expts

Unsolved Issues

!!! How can we probe these missing links? **!!!**

!!! Best Bet : Golden Channel !!!

Golden Channel ($P_{e\mu}$ **)**

The appearance probability ($\nu_e \rightarrow \nu_\mu$) in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$,

$$P_{e\mu} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

$$\pm \alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2};$$

where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv (\pm 2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$

Cervera et al.hep-ph/0002108 & Freund, Huber, Lindner, hep-ph/0105071

Eight-fold Degeneracy & Magic Baseline

Magic Baseline

If one chooses : $\sin(\hat{A}\Delta) = 0$

- Image: The δ_{CP} dependence disappears from $P_{e\mu}$
- Golden channel enables a clean determination of θ_{13} and $sgn(\Delta m^2_{31})$

Transition Probability $P_{e\mu}$

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

Normal .vs. Inverted hierarchy $\sin^2 2\theta_{13} = 0.1$

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.8/33

Transition Probability $P_{e\mu}$

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

Two different values of $\sin^2 2\theta_{13}$ Normal hierarchy

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.9/33

What is a Beta-Beam?

A pure, intense, collimated beam of ν_e or $\bar{\nu}_e$, essentially background free

P. Zucchelli, Phys. Lett. B 532 (2002) 166

Detailed R&D by Prof. Mats Lindroos and his team

Beta decay of completely ionized, radioactive ions circulating in a storage ring. No contamination of other types of neutrinos

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.10/33

Beta-Beam : Ion sources

lon	au (s)	E_0 (MeV)	f	Decay fraction	Beam
¹⁸ ₁₀ Ne	2.41	3.92	820.37	92.1%	$ u_e$
⁶ ₂ He	1.17	4.02	934.53	100%	$ar{ u}_e$
⁸ ₅ B	1.11	14.43	600684.26	100%	$ u_e$
⁸ ₃ Li	1.20	13.47	425355.16	100%	$ar{ u}_e$

Comparison of different source ions

Low- γ design, useful decays in case of anti-neutrinos can be 2.9×10^{18} /year and for neutrinos 1.1×10^{18} /year

Large (Small) $E_0 \Rightarrow$ Preferred for long (short) baseline

Magical Set-up : CERN-INO

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.12/33

Beta-Beam flux at INO-ICAL

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

Boosted on-axis spectrum of ν_e and $\bar{\nu}_e$ at the far detector assuming no oscillation

Resonance in matter effect

The very long CERN - INO baseline provides an excellent avenue to pin-down matter induced contributions

In particular, a resonance occurs at

$$E_{res} \equiv \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$
$$= 7.45 \text{ GeV}$$

with $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and $\rho_{av} = 4.17$ gm/cc (PREM) for the baseline of 7152 km

Maximal oscillations when $\sin^2 2\theta_{13}^m = 1$ and $\sin^2 \left[1.27(\Delta m_{31}^2)^m L/E\right] = 1$ simultaneously. At the magic baseline, largest oscillations occur at $E \simeq 6$ GeV

Gandhi et al.hep-ph/0408361

CERN - INO Long Baseline

$L_{\text{CERN-INO}}$ = 7152 km

The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm^2_{31}

The CERN - INO baseline, close to the 'Magic' value, ensures essentially no dependence of the final results on δ_{CP} . This 'Magic' value is independent of E

This permits a clean measurement of θ_{13} avoiding the degeneracy issues which plague other baselines

See the "Magic" at CERN-ICAL@INO

Agarwalla, Choubey, Raychaudhuri, 0711.1459

Event rates sharply depend on mass ordering and θ_{13}

Effect of δ_{CP} is negligible at magic baseline

Iso-event curves

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

At CERN-INO distance, the effect of δ_{CP} on the measurement of θ_{13} is less

 $Sgn(\Delta m_{31}^2)$ Search at CERN-ICAL@INO

Agarwalla, Choubey, Raychaudhuri, 0711.1459

• NH:TRUE
$$\Rightarrow \sin^2 2\theta_{13}$$
 (true) $\geq 5.51 \times 10^{-4}$ (3 σ) with $\gamma = 650$
• IH:TRUE $\Rightarrow \sin^2 2\theta_{13}$ (true) $\geq 3.05 \times 10^{-4}$ (3 σ) with $\gamma = 650$

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.18/33

Impact of $\delta_{\rm CP}$ (true) on the Hierarchy Sensitivity

Agarwalla, Choubey, Raychaudhuri, 0711.1459

• NH:TRUE
$$\Rightarrow \sin^2 2\theta_{13}$$
(true) $\geq 3.96 \times 10^{-4}$ (3 σ) with $\gamma = 650$
• IH:TRUE $\Rightarrow \sin^2 2\theta_{13}$ (true) $\geq 2.96 \times 10^{-4}$ (3 σ) with $\gamma = 650$

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.19/33

Energy threshold and Binned Analysis

Agarwalla, Choubey, Raychaudhuri, 0711.1459

Energy threshold upto 4 GeV is fine Spectral information and ($\nu + \bar{\nu}$) data helps

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.20/33

Impact of Background and Density Profile

Agarwalla, Choubey, Raychaudhuri, 0711.1459

• Effect of backgrounds is severe at higher γ values • Matter Density \uparrow Matter effects \uparrow Sensitivity \uparrow

$\sin^2 2\theta_{13}$ Sensitivity and Discovery

Agarwalla, Choubey, Raychaudhuri, 0711.1459

• Upper bound on θ_{13} at 3σ : $\sin^2 2\theta_{13}$ (true) $\leq 1.14 \times 10^{-3}$ • Signal for θ_{13} at 3σ if $\sin^2 2\theta_{13}$ (true) $\geq 5.1 \times 10^{-4}$

Impact of Luminosity

Agarwalla, Choubey, Raychaudhuri, 0711.1459

Sensitivity increases very fast initially and then comparatively flattens out

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.23/33

What does optimization study say?

Agarwalla, Choubey, Raychaudhuri, Winter, 0802.3621

See the talk by Walter Winter

• With $\gamma \sim 500$, use ¹⁸Ne+⁶He at short baseline for θ_{13} and ⁸B+⁸Li at the magic baseline for θ_{13} and $Sgn(\Delta m_{31}^2)$

What does optimization study say?

Agarwalla, Choubey, Raychaudhuri, Winter, 0802.3621

See the talk by Walter Winter

$${\scriptstyle \bullet}$$
 With $\gamma \sim 500,$ use ${}^{18}{\rm Ne}{\rm +}^{6}{\rm He}$ at the short baseline for CP violation

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.25/33

Two-Baseline Beta-Beam Set-up

Schematic layout of the proposed set-up

$\textbf{CERN - INO} \oplus \textbf{CERN - LNGS}$

 $L_{\rm CERN-INO}$ = 7152 km $L_{\rm CERN-LNGS}$ = 730 km

Measure $sgn(\Delta m^2_{31})$ and $heta_{13}$ at CERN-INO "Magic" baseline : No δ_{CP}

- Large matter effects help to probe sgn(Δm^2_{31})
- Close to "Magic", degeneracy free measurement of θ_{13}
- No information about CP phase

Measure δ_{CP} and θ_{13} at CERN-LNGS baseline : Full of δ_{CP}

Probes lower oscillation wavelength, vital for CP search

Quest for CP at CERN-TASD@LNGS

Agarwalla, Choubey, Raychaudhuri, 0804.3007

The $3\sigma \sin^2 2\theta_{13}$ (true) reach for sensitivity to "maximal CP violation"

Sensitivity improves sharply with γ and saturates beyond $\gamma \gtrsim 500$

Impact of Detector parameters at L = 730 km

Agarwalla, Choubey, Raychaudhuri, 0804.3007

Sensitivity to "maximal CP violation" (5-year run & standard luminosities)

Backgrounds affect the reach. Higher threshold causes degenerate solution

Discovery of CPV at CERN-TASD@LNGS

 $\sin^22 heta_{13}$ (true) $\ge 10^{-3}$ allows CP violation discovery for 64% of $\delta_{
m CP}$ (true) value

Two-Baseline combined results with Beta-Bean

Agarwalla, Choubey, Raychaudhuri, 0804.3007

Left (right) panel depicts the $sgn(\Delta m^2_{31})$ ($\sin^2 2\theta_{13}$) sensitivity reach at 3σ

Tremendous Sensitivity : Have a look !!

Set-up	$\sin^2 2 heta_{13}$ Discovery (3σ)	Mass Ordering (3σ)	Maximal CP violation (3σ)	
CERN-INO				
8 B+ 8 Li, $\gamma = 650$	9.5×10^{-5}	9.4×10^{-5}	Not possible	
CERN-LNGS	$2.07 imes 10^{-5}$	1.58×10^{-3}	1.97×10^{-5}	
$^{18}\mathrm{Ne+}^{6}\mathrm{He}$, $\gamma=575$	1.27×10^{-5}	1.84×10^{-3}	1.23×10^{-5}	
CERN-LNGS				
$^{18}\mathrm{Ne+}^{6}\mathrm{He}$, $\gamma=575$	1.88×10^{-5}	4.64×10^{-5}	1.78×10^{-5}	
+	1.2×10^{-5}	4.34×10^{-5}	1.13×10^{-5}	
CERN-INO				
8 B+ 8 Li, $\gamma = 650$				
Optimized				
Neutrino Factory	1.5×10^{-5}	1.5×10^{-5}	1.5×10^{-5}	

 $1.1 imes 10^{19}$ ($2.9 imes 10^{19}$) useful ion decays / year in the u ($ar{
u}$) mode

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.32/33

 $\sin^2 2\theta_{13}$ Precision

Agarwalla, Choubey, Raychaudhuri, 0711.1459

\bullet How precisely the mixing angle $\sin^2 2\theta_{13}$ will be measured?

Sanjib Kumar Agarwalla (Nufact 08 Valencia-Spain, 30th June, 2008) sanjib@hri.res.in – p.33/33