Indirect Searches for Dark Matter Signatures at INO

Deepak Tiwari, Anushree Ghosh and Sandhya Choubey

India Based Neutrino Observatory, Harish Chandra Research Institute

Abstract

Weakly Interactive Massive Particles (WIMPs) are among the most favored dark matter candidates. Their capture and subsequent annihilation at the center of Sun/ Earth may give rise to neutrinos, through various annihilation channels. The detection of such neutrinos at INO, which will house a 50-kt Iron Calorimeter (ICAL) can provide insight into the nature of light dark matter.

Introduction

As the solar system moves through the halo, the WIMPs gets scattered on the particles in the Sun/Earth and lose energy. If their final velocities are lesser than escape velocity at the Sun/Earth, then they get gravitationally trapped by the gravitational potential of the Sun/ Earth and sink to their respective cores.

Atmospheric Background

- The atmospheric neutrinos are in GeV range and will pose background to the signal neutrinos.
- The signal neutrinos are in the direction of Sun whereas the atmospheric neutrinos come from all directions and its dependence and nature is comparitively well studied.
- By placing an angular cone in the direction of Sun and accepting only those events due to atmospheric neutrinos that fall within that cone, we can significantly reduce the atmospheric background.
- For present work a constant angular cut of 10° has been applied for all energy bins.
- The WIMP getting annihilated in the Sun/ Earth will do so into standard model particle that would give neutrinos of different energies.
- The detection of those neutrinos, in principle, can provide information about the nature of Dark matter viz. its mass and cross section.

Figure 1: WIMP annihilations in the Sun.

Fluxes at INO

Figure 3: Expected DM Flues at INO due to 25GeV WIMP annihilation in the Sun through various channels. $\chi \chi \rightarrow \nu \nu$ constitutes Kaluza-Klien channels.

Results

The ICAL@INO Detector

- INO is a proposed underground research facility at Bodi Hills, Tamil Nadu, India.
- ► ICAL is an upcoming detector at INO, primarily proposed to study atmospehric neutrinos and will comprise 150 layes of glass RPCs and 50-kt magnetised Iron mass.

Figure 2: ICAL at INO

Figure 4: Expected $\mu + \bar{\mu}$ events for 25 GeV WIMP mass, 10 years of ICAL running and 1 fb SD DM-nucleon cross section assumed. Constant resolution and efficiencies have been assumed for all energy bins with 1 GeV bin width.

Simulation Methods

- ► WIMP annhilations for $m_{\chi}=25$ GeV, $2.5 imes10^6$ events.
- Oscillation parameters: $2.5 imes10^6$, $heta_{12}=34^\circ$, $heta_{13}=10^\circ$ $9.2^{\circ}, \theta_{23} = 45^{\circ}, \delta =$

Conclusion

- Neutrinos arising out of WIMP annihilations in the Sun can be used to probe dark matter signatures.
- \blacktriangleright Among the annihilation channels , KK and $au^+ au^-$ are the most prominent ones, followed by **bb**, **c**c channels.
- ► With the present angular cuts on the atmospheric background ,the possibility of detection of WIMPs at ICAL seems feasible.

http://www.ino.tifr.res.in/ino

$0, \Delta_{21}^2 = 7.5 imes 10^{-5}$ eV² and $\Delta_{31}^2 = 2.4 \times 10^{-3} \text{eV}^2$

- ► Flux normalisation: $\frac{\mathrm{d}\mathsf{N}_{\nu}}{\mathrm{d}\mathsf{t}\mathrm{d}\Omega\mathrm{d}\mathsf{E}_{\nu}} = \frac{\mathsf{\Gamma}_{\mathrm{ann}}}{4\pi\mathsf{R}^{2}}\sum\mathsf{B}\mathsf{R}_{\mathsf{i}}\frac{\mathrm{d}\mathsf{N}_{\mathsf{i}}}{\mathrm{d}\mathsf{E}_{\nu}}$ with ho_{local} (0.3 Gev/cm⁻³), $ar{\mathbf{v}}_{\mathsf{local}}$ (270 kms⁻¹), $oldsymbol{\sigma}$ =1fb.
- ► For NUANCE,1000 years of exposure, scaled down to 10 years.
- ► Values used: 50kt Iron mass,80% detector efficiency, 12% Energy Resolution, 1%Angular resolution and 99.15% cid efficiency.

References

[Agarwalla, 2011] S. K. Agarwalla, M. Blennow, E. F. Martinez, O. Mena(2011) Neutrino Probes of the Nature of the Light Dark Matter hep-ph [arXiv:1105.4077v1]

[Blennow, 2008] M. Blennow, J. Edsjo and T. Ohlsson (2008) Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo JCAP 0801 (2008) 021 [arXiv:0709.3898]

[Mena, 2008] O. Mena, S. Palomares-Ruiz, and S. Pascoli (2008) Reconstructing WIMP properties with neutrino detectors *Phys. Lett.* B664 (2008) 92-96 [arXiv:0706.3909]

Acknowledgments

► ITN Invisibles, Members of The INO Collaboration

deepaktiwari@hri.res.in