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We review the physics potential of future neutrino factories, given the current status of knowledge about neutrino
mixing parameters.
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1 The Major Results So Far

This article is based on a set of excellent reviews1 in
this field, and is an attempt to elucidate the physics
potential of neutrino beams from future possible neu-
trino factories, in contrast to that of beams or super-
beams from conventional accelerators. While neutrino
factories are still somewhat far off in the future, there
already exist long baseline experiments with beams
from accelerators in FermiLab and KEK. The latter,
the so-called K2K experiment, has already yielded
data. For more details on long baseline experiments
with conventional beams, see the review by S. Uma
Sankar in this volume.

Neutrino physics has become more of a precision
science, nearly four decades after its inception. The
major results in this area, from various experiments
around the world2, have contributed to provide over-
whelming evidence that neutrino flavours mix, viz.,
that the propagating neutrino mass eigenstates are not
the same as the interacting flavour eigenstates, and
that they oscillate. A requirement of neutrino flavour
oscillations is that neutrinos should have mass (more
precisely, that they should have different masses).
Hence, measurements of neutrino fluxes from various
sources indicate that neutrinos are massive, thus lead-
ing to the first evidence for new physics beyond the
Standard Model of particle physics.

Neutrinos have been observed from the Sun. They
have also been observed from cosmic ray interactions
with the atmosphere (the so-called atmospheric neu-
trinos) and from supernovae. Apart from these nat-
ural sources, neutrinos from laboratory sources such

as from reactors and accelerators have also been stud-
ied. Results have been obtained from a world-wide
community of neutrino physicists, in labs such as the
Kamiokande, Super-Kamiokande in Japan, Sudbury
Neutrino Observatory in Canada, CHOOZ in France,
and LSND in the U.S.

Together, the data yield clear and compelling ev-
idence for neutrino flavour oscillations and hence of
neutrino mass. They also indicate the presence of
at least three active neutrino flavours or generations
(already known from Z-width data). While the mix-
ings between the (12) and (23) generations seem to be
large, and indeed maximal in the latter case, the (13)
mixing seems small. Hence the mixing decouples into
two sets of 2-flavour mixings, thus leading to a vir-
tual decoupling between the mixing angles measured
in solar and atmospheric neutrino experiments.

Table I
The table shows the presently known values (or limits) on the neutrino

oscillation parameters.

parameter central value
δ21 6 � 9 � 10 � 5 eV2

sin2 2θ12 0.82�
δ32

�����
δ31

�
2 � 6 � 10 � 3 eV2

sin2 2θ23 1.0
sin2 2θ13 � 0 � 13

The central allowed values of the known parame-
ters (mass squared differences δi j 	 m2

i 
 m2
j and mix-

ing angles θi j) that define the oscillations are listed in
Table I. Solar neutrino data and the KamLAND reac-
tor experiment helped determine the parameters in the
(12) sector while atmospheric neutrino data was used
to determine the (23) parameters. The reactor exper-
iment CHOOZ has given the single limit on the (13)
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mixing angle while the LSND accelerator experiment
indicates that there may be more than three neutrino
flavours, one of them possibly sterile.

2 Issues to be Addressed in the Future

This brings us to the questions still to be answered.
The first question is of course whether what is ob-
served is indeed evidence for neutrino oscillation. To
establish this beyond doubt, it is necessary to “see”
the oscillation pattern, that is, not just a depletion but
also an enhancement of the signal. While this has
not yet been directly seen, a combination of the SNO
charged-current (CC) and neutral-current (NC) data
strongly favours the oscillation scenario. Assuming
that this is true, it remains to fix the oscillation param-
eters precisely.

The major issue is then whether θ13 is zero or
not. For instance, only when θ13 is not zero can
one ask questions related to CP violation in the neu-
trino sector. Since the CP violation phase δCP oc-
curs with sinθ13, CP violating effects are expected
to be small; hence their measurement is definitely a
challenge. Theoretically, also, it is interesting to ask
whether CP violation in the leptonic sector can con-
tribute to baryogenesis via leptogenesis.

While it is established that m2 � m1, the sign of
δ32 is not yet known. The theoretical motivation for
determining this is in determining the mass hierar-
chy in the leptonic sector. More technically, actual
construction of neutrino mass/mixing models requires
knowing whether θ23 is exactly maximal or just nearly
so. Finally, there is still some room to ask questions
about sterile neutrinos, neutrino decay, CPT violation,
etc.

Notice that issues related to neutrino oscillation
have been highlighted here, as setting the motivation
for building neutrino factories. There is a long list of
questions still awaiting answer in neutrino physics that
do not necessarily involve oscillation phenomena: an
example is whether neutrinos are Dirac or Majorana
particles, and hence whether they can participate in
neutrino-less double beta decay. Another issue that
cannot be addressed by future neutrino factories is the
actual scale of neutrino masses; these can only be de-
termined by direct experiments such as the measure-
ment of the end-point of the tritium beta decay spec-
trum. Many of these issues have been dealt with in
other chapters of this review. We however would like

to highlight our belief that physics at a neutrino fac-
tory is interesting only if sin2 2θ13 � 0 and relevant
only if it is not too small.

3 Neutrino Masses and Mixings: A Short Review

Let να refer to the flavour eigenstates, α  e � µ � τ .
These are related to the mass eigenstates, ν j � j 
1 � 2 � 3, through the 3 � 3 unitary matrix,

να
 ∑

j

Uα j ν j �
The mixing matrix is parametrised in terms of the
mixing angles θ12, θ23, θ13, and the CP violating
phase δ , as

U  �
c13c12 c13s12 s13e � iδ� c23s12
� s23c12s13eiδ c23c12

� s23s12s13eiδ c13s23
s23s12

� c23c12s13eiδ � s23c12
� c23s12s13eiδ c13c23 �

Here c12 and s12 refer to cosθ12 and sinθ12, etc. Also,
note that the CP violating phase always occurs with
s13, as has been highlighted above.

The propagation of neutrinos of energy Eν in mat-
ter is determined by

i
dνα
dt

 ∑
β

�
∑

j

Uα jU �β j

m2
j

2Eν � A
2Eν

δαeδβe � νβ �
where A ��� 2Eν � refers to the amplitude for coherent
forward CC scattering in electronic matter, i.e., νe e
scattering. The matter dependent term is given by,

A  2 � 2GFYeρEν � 1 � 52 � 10
� 4Yeρ � Eν � GeV � eV2 �

Here ρ is the density of Earth matter in gm/cc and Ye

is the electron fraction in the matter, while GF is the
usual Fermi coupling constant. Using the fact that the
(31) mass-squared difference is larger in magnitude
than the (21) mass-squared difference (see Table I),
we can rearrange the expression to give

i
dνα
dt ∑

β

1
2Eν � δ31Uα3U �β3 � δ21Uα2U �β2 � Aδαeδβe � νβ �

where an irrelevant diagonal piece has been discarded.
The results can be expressed in terms of transi-

tion probabilities of the various flavour eigenstates af-
ter propagating a distance ct  L. In the absence of
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matter, the leading order probabilities are,

Peµ � s2
23 sin2 2θ13 sin2  δ32L !�" 4E #%$'&

Peτ � c2
23 sin2 2θ13 sin2  δ32L !�" 4E #%$'&)(%(%( (1)

Pµτ � c4
13 sin2 2θ13 sin2  δ32L !�" 4E #%$'(

Clearly, these expressions are independent of δ21, the
sign of δ32, and the CP violating phase δ . At next-to-
leading order in α � δ21 ! δ31 and θ13, both δ21 and δCP
appear while the sign of δ32 becomes relevant only
when matter effects are included.

In the absence of matter, an eight-fold degeneracy
was noted3, arising from

1. sign degeneracy in * δ32 * , that is, in δ32 +-, δ32.

2. θ23 + π ! 2 , θ23; a change that can be com-
pensated by a corresponding change in the un-
known sin2 2θ13,

3. Changes in δCP being compensated by changes
in sin2 2θ13. These parameters are strongly cor-
related, as can be seen from the definition of the
mixing matrix above. In fact, it turns out that it
is always possible to find a solution by chang-
ing sin2 2θ13 in such a way as to always retain
δCP � 0. Hence this degeneracy mixes the CP
conserving and CP violating sectors.

On including matter effects, some of these degenera-
cies can be lifted. The probabilities can be expanded
in α and sin2 2θ13 to give4,

Peµ . sin2 2θ13s2
23

sin2 " 1 , Â # ∆" 1 , Â # 2/
α sin2θ13ξ sinδCP sin∆

sin Â∆
Â

sin " 1 , Â # ∆
1 , Â #0 α sin2θ13ξ cosδCP cos ∆

sin Â∆
Â

sin " 1 , Â # ∆
1 , Â #0 α2 c2

23 sin2 2θ12
sin2 Â∆

Â2 ( (%(%( (2)

We have dropped the subscript on the neutrino en-
ergy for clarity, and have used ∆ � δ31L !�" 4E # , ξ �
c13 sin2θ12 sin2θ13, Â � / " 2 1 2GFYeρE #%! δ31 with
plus (minus) sign for neutrinos (antineutrinos), so that

Â∆ � / 1 2
2

GFYeρL &
independent of the neutrino energy E and proportional
to the path length L.

With this rearrangement, several features of the
mixing stand out:

1. The MSW resonance condition is Â � 1. Near
resonance, the first term is enhanced by matter
effects. This is also therefore most sensitive to
the sign of δ31 through the sign of Â.

2. CP violation occurs only in the order 23" α #
terms, viz., the second and third terms and is
small, being not only suppressed by α but also
by sin 2θ13.

3. The fourth term is independent of θ13 and δCP
and is sensitive to the value of δ12, should the
former two be zero.

4. Note that most degeneracies arise for large α .

CP Independence and the Magic Baseline

We have seen that the sign of δ31 is determined
essentially by the first term in eq.2. The degeneracy
that affects the precision with which this can be de-
termined is one where the CP phase can be changed
to compensate for this effect. A solution5 is to search
for regions where the CP-dependent terms drop out,
so that this “compensation” cannot happen. It is clear
from eq.2 that this happens when

sin Â∆ � 0 (
The first non-trivial solution to this condition is1 2GFYeρL � 2π (
For Ye . 1 ! 2, this energy independent condition leads
to L . 32 & 726 ! ρ " gm ! cc # in km. For a constant Earth
matter density of ρ . 4 ( 3 gm/cc, this gives L . 7630
km, that reduces somewhat to L . 7250 km when a de-
tailed Earth density profile from the Preliminary Ref-
erence Earth Model (PREM) model is used. Notice
that for this baseline, the neutrinos barely graze the
Earth’s core and hence density variations are not ex-
pected to be large.

As a consequence, for such a baseline,

1. There is no degeneracy from the sign of δ31.

2. All terms containing δCP vanish so there is no
CP dependence.
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Fig. 1 Possible schemes for a muon storage ring. On the left, almost 50% of the muons will decay in each straight section; in the middle,

a more modest approach with rounded sides of the same length as the straight sections allows for about 25% of the muons to

decay in each straight section, which may be about 37 m long for 20 GeV muons. On the right, a bow-tie configuration can allow

for large dip angles.

3. All correction terms to order 435 α 2 6 vanish,
hence allowing for a clean measurement of
sinθ13.

4. Since L is large, it is expected that statistics will
be poor; hence it is necessary to have power-
ful beams. Sizable event samples will therefore
only be obtained with beams from future neu-
trino factories.

5. It is possible to combine results from such a
baseline with another baseline, say at L 7 3000
km, to get a handle on the CP phase δ .

4 Neutrino Beams

Conventional beams can be upgraded to superbeams
by increasing the power of the initial proton beams to
megawatt power. Such beams are obtained by produc-
ing pions and kaons from the initial protons, which
then decay in a long decay channel, thus generating
the neutrino beam. While the dominant π 8 gives a
νµ , for instance, K 8 will give a νe so that there will
always be a contamination at the level of a percent or
so in the flavour content of the neutrino beam. This is,
provided, of course, that µ decay is also suppressed.
Apart from the wrong-flavour contamination, the flux
of the νe and νµ is not precisely known. Furthermore,
at high energies, ντ contamination of the beam may
limit future searches for νµ 9 ντ oscillation.

In a muon storage ring, many of these drawbacks
are overcome. Of course, the primary source of the

muons is still a proton beam, with meson production
target and collection system, and a meson decay chan-
nel, but here it is the muons that are circulating in the
ring. Such a ring is still in the design stage; indeed,
some designs may require muon cooling as well.

Work on the feasibility of such a muon storage
ring and a neutrino factory is in progress at CERN
in Europe, in the US, and in Japan6. Most of the de-
tails in this review are taken from detailed studies con-
ducted by these research groups. The key idea is that
the “ring” will have long straight sections where the
muon can decay. This will help obtain a narrow, fo-
cused beam. Possible schemes are shown in Fig.1 and
possible baselines are listed in Table II.

A neutrino beam from such a neutrino factory
with a muon storage ring will therefore contain equal
amounts of e and µ flavours. For example, a µ : beam
will give equal amounts of νµ and νe in the neutrino
beam. Also, the fluxes of each flavour are precisely
calculable8 . The angular resolution of the beam is
dominated by divergence due to decay kinematics. An
angular precision of about 20 µr is feasible with a spa-
tial resolution of about 500 microns, so that a beam
size of about 1 km is achieved on the far side, at the de-
tector. Also, a compact size (about 150 m circumfer-
ence for a 20 GeV muon beam) implies that the whole
instrument can be tilted with respect to the horizontal,
an essential requirement for long baseline beams.

The main advantage of knowing the composition
of beams from neutrino factories is that a primary sig-
nal for neutrino oscillation is the discovery of “wrong-

Table II
Some possible baselines (in km) and source/detector combinations for neutrino factory experiments. Table from ref.[7]. Also included are the baselines

to two possible sites in Rammam and PUSHEP in India.

FermiLab to Brookhaven to JHF to CERN to
Soudan (730) Cornell (350) Super-K (295) Frejus (150)
Homestake (1290) Soudan (1720) Seoul (1200) Gran Sasso (730)
San Jacinto (2640) Homestake (2540) Beijing (2100)
SLAC (2900) PUSHEP (6595) PUSHEP (7145)

Rammam (4900) Rammam (6900)
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Fig. 2 Sensitivity to sin2 2θ13 as a function of the (12) mass-squared difference, δ21. The currently favoured region is the right half of

the x-axis. Figure from ref.[10]. For details, see the text.

sign” muons. For example, if the original beam com-
position is νe and νµ , then the CC interaction of the
latter in the detector gives µ ; . However, the oscil-
lation of νe as νe < νµ results in a CC interaction
with µ = being produced. Hence, charge identifica-
tion is a primary requirement of any far-end detector.
Of course, a near-detector is essential for flux normal-
isation as well. The detector must be sensitive to elec-
trons or muons or both.

In the νµ beam, the event rate is proportional to
E3 and so is very much higher than from superbeams.
The flux energy distribution has a sharp cut-off at Eµ .
The absence of a high-energy tail (as seen in con-
ventional superbeams) implies that the background of
“fake” events due to high energy NC π0 events is
avoided. For νe < νµ , the wrong-sign muon back-
ground is less than few parts 10 = 4 in contrast to con-
ventional beams where it may be as high as one in
hundred.

The physics reach of a neutrino beam from either
right- or wrong-sign muons and electrons is to deter-
mine the sign of δ31, the magnitude of the across-
generation mixing parameter, sinθ13, and the CP
phase δ . In short, it has the potential to determine
all oscillation parameters to great accuracy.

5 Numerical Simulations with Neutrino Factory
Beams

We now show results obtained by various groups
working on the physics potential of neutrino factories.
A compilation of various working group reports and
technical status is available at the neutrino oscillation
industry web-site9. The sensitivity of a certain beam-
baseline combination can be defined differently. For
instance, the sensitivity to sin2 2θ13 can be defined as
the largest value of sin2 2θ13 that fits the true value
of sin2 2θ13 > 0; it can also be defined as that value
which gives at least 10 wrong-sign muon events per
year. We shall not specify the definition used in each
instance but refer the interested reader to the original
papers.

Sensitivity to sin2 2θ13

Starting with νe, an oscillation to νµ is sensitive
to the (13) mixing angle through the measurement of
wrong-sign muons. (See eq.2). There is no depen-
dence on the sign of δ31. All the plots shown are taken
from ref.[10], where it has been assumed that sin2 θ23
and ? δ31 ? are known to within 10%. Fig.2 shows the
sensitivity to sin2 2θ13 from neutrino factory beams of
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Fig. 3 Effects of degeneracies on extraction of sin2 2θ13. On the left is the effect on data from superbeams in comparison with those

from nu-factories with L @ 3000 km. On the right are data from nu-factories with different baselines. It is seen that degeneracies

are lifted for large L. The effects of systematics and correlations are also shown. Figure from ref.[14].

different energies (from 20–50 GeV) as a function of
the (12) mass-squared difference, δ21, for a baseline
of L A 2900 km.

The calculation assumes 2 B 1020 decays per year,
and data collection using a 50 kton detector over a 5
year period. The reach of a conventional superbeam
with a 22.5 kton detector (JHF to Super-Kamiokande)
is also shown, along with the current excluded region
from CHOOZ11. Note that this uses a central value
of C δ32 CDA 3 E 5 B 10 F 3eV2, which has been revised to
a lower value due to the re-evaluation of the Super-K
data12; due to this the CHOOZ limits have also slightly
worsened.

The effects of degeneracies on the measurement
of the (13) mixing angle are shown in Fig.3. The left
edge of each band is the statistical limit to the sensi-
tivity, which is defined as obtaining at least 10 wrong
sign muons per year. Systematics, correlational errors,
and degeneracies successively reduce the sensitivity to
the right edge of the band for each experiment.

While systematic errors are under control both for
superbeam and nu-factory beams, correlations are sig-
nificant in both, with degeneracies sharply limiting the
reach of sin2 2θ13 to the 10 F 3 region for both super-
beams and nu-factories, and improving to a little bet-
ter than 10 F 4 for very long baseline (L A 8100 km)
nu-factories. In fact, we will see later that this also
limits the sensitivity to the sign of δ31.

Sensitivity to the Sign of δ31

Matter effects are different for particles and an-

tiparticles (the matter-dependent term A changes its
sign in the two cases). For example, the leading or-
der term in the νe G νµ transition probability can be
expressed in terms of matter-dependent mixing angles
and mass-squared differences as,

Peµ A sin2 2θ m
13 sin2 θ23 sin2 ∆m

31 H
while that for the corresponding transition between
antineutrinos is given by Peµ as above, with A GJI A
in the expression for sinθ m

13. Hence, if δ31 K 0, then
the resonance condition A L δ31 enhances Peµ , while,
if δ31 M 0, then the resonance condition I A L δ31 en-
hances Peµ . This means that sensitivity to the sign
of δ31 can be obtained only if the nu-factory is run
with both µ N and µ F in the storage ring, so as to
get neutrinos and antineutrinos of the same flavour.
Then the ratio of wrong sign muons with ν e in the
beam to those with νe in the beam is greater or less
than a half (the ratio of the antineutrino to neutrino
cross-section), depending on whether whether δ31 is
less than or greater than zero. The enhancement (or
suppression) of this ratio increases with baseline, as
can be seen from Fig.4.

Note that the magnitudes of both mass-squared
differences have been used as input here, although the
dominant contribution to this effect is from the first
term in eq.2, which is independent of δ21. The rela-
tive contributions of the second and third terms of eq.2
will increase substantially if α is as large as sin2θ13,
but the event rates will be severely depleted if sin 2θ13
is too small. Hence, there is a close correspondence
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Fig. 4 Sensitivity to the sign of δ32 (or equivalently δ31) as a function of the baseline. Also shown are the bands from varying the CP

phase maximally from R π S 2 to π S 2. The error bars shown correspond to 5 T 1022 decays-kton and are plotted for the solid line

with CP phase δ U 0. For details, see the text. Figure from ref.[13].

between sensitivity to the sign of δ31 and the value of
sin2θ13. This is shown in Fig.5. It is seen that sensi-
tivity to the sign of δ31 is constrained by the magni-
tude of the (13) mixing angle; if sin2 2θ13 V 10 W 4 or
so, the sign of this mass-squared difference cannot be
determined.

Sensitivity to the CP Phase δ

As stated earlier, the CP phase δ occurs always
with sin θ13; hence CP effects are expected to be sub-
dominant. That the phase δ is the source of CP viola-
tion is easy to see by expressing the transition proba-
bility as

Pαβ X PCPeven
αβ Y PCPodd

αβ Z
Then

PCPeven
αβ X PCPeven

αβX δαβ [ 4 ∑
i \ j

Re ] Uα iUβ̂ iUα̂ jUβ j _ sin2
δi jL

4E ` Z%Z%Z (3)

PCPodd
αβ X [ PCPodd

αβX 2 ∑
i \ j

Im ] Uα iUβ̂ iUα̂ jUβ j _ sin
δi jL

2E ZaZ%Z%Z (4)

Hence the phase δ contributes to the imaginary part
of the matrix element, which then contributes to the
CP-odd part. Because of this, the CP violating terms
show up in the particle-antiparticle asymmetry, i.e., in
the same ratio of wrong sign events from ν e and νe

beams respectively. The effect of CP violation is not
large, as can be seen from Fig.4. Again, the effect of
CP violation is only visible if the (13) angle is not too
small and not too large. The value used in the figure,
sin2 2θ13 X 0 Z 004 is near the limit of sensitivity of CP
measurements; if it is greater than about 0.001 or so,
the sign of δ31 has the largest effect on the ratio plot-
ted. As already mentioned, sensitivity to CP effects
can be enhanced by using two baselines, one of them
magic.

Comparison with Reactor Experiments

Reactor experiments typically have short base-
lines and hence no matter effects. Hence they are in-
sensitive to the sign of δ31 and the CP phase δ . The
main advantage is that there are no degeneracies15 .
Hence they provide a precision measurement of the
(13) mixing angle. For more details on neutrino ex-
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Fig. 5 Effect of systematics, correlations and degeneracies in the minimum value of sin2 2θ13 for which the sign of δ31 can be determined

by superbeams or nu-factory beams. Figure from ref.[14].

periments at reactors, see the article by C V K Baba in
this volume. Detailed studies at future reactor exper-
iments (with a near detector for flux normalisation)
have been done15. It is probable that a combination
of superbeams and reactor experiments can give im-
proved bounds on the sign of δ31 and δCP in a reason-
ably short time.

Comparison with Beta Beams

The technology requirement for building neutrino
factories is rather stringent. In the meanwhile, a new
idea in the shape of beta-beams is being discussed.
Here, a radioactive nucleus (e b or e c emitter) is ac-
celerated so that the produced neutrinos are collimated
and energetic. The energies involved are of the order
of 100s of MeVs. The physics reach seems to be com-
petitive with that of neutrino factories, when the re-
sults are combined with those from superbeams. The
main thrust of such experiments will be searches for
leptonic CP violation since the original beams are very
pure. For details, see ref.[16].

Outlook

It is clear that precision measurements on the neutrino
oscillation parameters can only be made with neutrino
factory beams. While a lot of work is still going on in

this field, it appears as though a combination of two
baselines (at 3000 and 7200 km) will be best-suited to
determine the maximal number of parameters with the
maximum sensitivity. It may be pointed out here that
the latter magic baseline is very close to the CERN-
PUSHEP (India) and not too far off the JHF-PUSHEP
(India) distance. Hence the possibility of having an
India-based detector as a far-end to a magic (or near
magic) long baseline experiment should be seriously
discussed.

Of course, it must be kept in mind that there are
a lot of non-oscillation physics possibilities at a neu-
trino factory where 106–107 neutrino events are avail-
able per kg per year. The possible experiments in-
clude precision neutrino cross-section measurements,
structure function measurements, including αs from
non-singlet structure functions, nuclear effects such as
shadowing, determination of individual parton densi-
ties, spin-dependent structure functions, tagged single
charm meson/baryon production, electro-weak tests,
exotic searches, and the entire gamut of tests of the
standard model, not to forget physics with the primary
proton beam. It appears that a wealth of physics op-
portunities is in store at neutrino factories; their poten-
tial is just being tapped and the technical requirements
and feasibility issues are yet to be completely studied
and understood.
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