An Investigation of Passive Optical Networks for India Based Neutrino Observatory

Vaibhav Pratap Singh, Nitin Chandrachoodan, Anil Prabhakar

Indian Institute of Technology Madras

19.01.13
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

Outline

1. India based neutrino observatory (INO)
2. Network configurations
 - Controller Area Network (CAN)
 - Optical CAN
 - Passive star optical network
3. Experimental results
4. Conclusion
India based neutrino observatory (INO)

- A project aimed at building a world class underground laboratory for neutrino research in India
- Initial objective is to design a magnetized iron calorimeter detector (ICAL) and study neutrinos produced by cosmic rays in the Earth’s atmosphere
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

India based neutrino observatory (INO)

Network configurations
Controller Area Network (CAN)
Optical CAN
Passive star optical network

Experimental results

Conclusion

Resistive plate chamber (RPC)\[^1\]

- each RPC will be 1.84 m x 1.84 m
- Neutrinos generates signal on 128 metallic strips present on each RPC

Each layer on each module has 64 RPCs[2]

- Has about 30,000 RPCs across 3 modules with 150 layers each
- At 1 Hz trigger rate each RPC will generate data at 252.25 kbps
- At 10 Hz trigger rate (worst case) it will increase to 2.52 Mbps

2Interim Project Report, “India Based Neutrino Observatory”, Volume 1, 2005.
Network of RPCs

- A network of 30,000 RPCs (sensor nodes with a data rate of 2.52 Mbps each) is required
- Possible options are
 - Ethernet
 - Controller area network (CAN)
 - Optical CAN
 - Passive star optical network (PSON)
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

- India based neutrino observatory (INO)
- Network configurations
- Controller Area Network (CAN)
- Optical CAN
- Passive star optical network
- Experimental results
- Conclusion

Controller area network (CAN)[3]

- Is a serial, two wire, half duplex network protocol widely used in the automotive industry
- Has two ISO standards: ISO 11898- applications up to 1 Mbps & ISO 11519- applications up to 125 kbps
- Uses carrier sense multiple access/collision detection to avoid collision by arbitration on message priority

![Standard CAN frame structure](http://hem.bredband.net/stafni/developer/CAN.htm), accessed on 10.10.12.
- The round trip propagation time of a bit should be less than the transmission time of the bit.
- Network has an optical loss of about 28.81 dB.
Optical CAN

- The round trip propagation time of a bit should be less than the transmission time of the bit.
- Network has an optical loss of about 28.81 dB.
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

Optical CAN

- The round trip propagation time of a bit should be less than the transmission time of the bit.
- Network has an optical loss of about 28.81 dB.

![Diagram of Optical CAN network](https://via.placeholder.com/150)
Optical CAN

- The round trip propagation time of a bit should be less than the transmission time of the bit.
- Network has an optical loss of about 28.81 dB.
Collision detection in optical CAN

- ‘1’ is a dominant bit in the optical layer
- Requires a microcontroller, an optical TxRx & softcore CAN controller
Each node should transmit at $2.52 \text{ Mbps} \times 8 = 20.16 \text{ Mbps}$

In the optical layer, we have a bus length of $\frac{c}{n \times f}$ \[4\]

As each RPC is 1.84 m, this yields a bus length of $2 \times 1.84 \times 8 \approx 30 \text{ m}$ which corresponds to a data rate of 6.7 Mbps.

Can support up to 3.32 Hz average trigger rate.

\[4f = \text{effective data rate}, \quad c = 3 \times 10^8 \text{ m/s}, \quad n = 1.5 \text{ (effective refractive index of fiber)}\]
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

India based neutrino observatory (INO)
Network configurations
Controller Area Network (CAN)
Optical CAN
Passive star optical network
Experimental results
Conclusion

Passive Star Optical Network (PSON)

- A 1 x 8 splitter is used
- Uses TDM in downstream and TDMA in upstream to exchange data
- Each node should transmit a worst case data rate of 2.52 Mbps x 8 = 20.16 Mbps

A diagram of the Passive Star Optical Network (PSON) is shown, with a 1 x 8 splitter and multiple sensor nodes connected through an optical bus (Bi-directional).
An Investigation of Passive Optical Networks for India Based Neutrino Observatory

Passive Star Optical Network

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector loss</td>
<td>0.1 dB x 2 = 0.2 dB</td>
</tr>
<tr>
<td>Single mode fiber loss</td>
<td>0.35 dB/km x 16 m = 5.6 x 10^{-3} dB</td>
</tr>
<tr>
<td>1 x 8 splitter typical insertion loss</td>
<td>10.5 dB x 1 = 10.5 dB</td>
</tr>
<tr>
<td>Total loss</td>
<td>10.7 dB</td>
</tr>
</tbody>
</table>

![Diagram of Passive Star Optical Network](image)

Figure not to scale
- It has a microcontroller (M430F5438A) interfaced to an optical transceiver (SSTR3111-13-133) through UART
- It has slots for temperature, pressure and humidity sensor to provide dummy data
Hardware specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>MSP430 (PMMCore = 2, 8 MHz)[^5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active mode current</td>
<td>3.08</td>
<td>mA</td>
</tr>
<tr>
<td>Sleep mode (LPM3) current</td>
<td>2.3</td>
<td>µA</td>
</tr>
<tr>
<td>Optical transceiver[^6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating wavelength</td>
<td>1310</td>
<td>nm</td>
</tr>
<tr>
<td>Average input power</td>
<td>-8 to -15</td>
<td>dBm</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>0.5</td>
<td>Mbps</td>
</tr>
<tr>
<td>Operating current</td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-25</td>
<td>dBm</td>
</tr>
<tr>
<td>Single mode fiber loss</td>
<td>0.35</td>
<td>dB/km</td>
</tr>
</tbody>
</table>

[^5]: "MSP430F543xA, MSP430F541xA data sheet", Texas Instruments, October 2010.
[^6]: "SSTR3111-1*-13*(-P) product data sheet", Star Opto, Ver 0.1, 06.08.11.
Optical loop back test

Eye diagrams

Data rate = 454.4 kbps and Tx power = -15 dBm.
Comparison

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Optical CAN</th>
<th>PSOn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware in the network</td>
<td>eight nodes, eight 2×2 couplers</td>
<td>eight nodes, one 1×8 splitter</td>
</tr>
<tr>
<td>Data rate</td>
<td>supports the typical trigger rate of 1 Hz, with a data rate of 252 kbps.</td>
<td>can support much higher trigger rates. limited by the speed of the optical TxRx and microcontroller</td>
</tr>
<tr>
<td>Collision avoidance</td>
<td>arbitration on message priority</td>
<td>TDM</td>
</tr>
<tr>
<td>Optical power loss</td>
<td>more (≈ 29 dB)</td>
<td>Less (≈ 10.7 dB)</td>
</tr>
<tr>
<td>Cost</td>
<td>high (uses 8 couplers)</td>
<td>Low (uses only one splitter)</td>
</tr>
<tr>
<td>Application</td>
<td>easy (patch cord between two couplers)</td>
<td>Tough (drawing of fiber out at each node)</td>
</tr>
</tbody>
</table>
Conclusion

- The proposed PSON is a possible passive optical network that can be implemented at INO to get the full network of about 30,000 RPCs.
- The optoelectronic board designed meets the optical power requirement of the network as well.
The authors are thankful to

- members of the INO consortium for sharing details of the INO electronics
- Dr. B. Satyanarayana for detailed discussions on data rates
- Texas Instruments for assistance with the MSP430 microcontroller
- Mr. Arun for designing the optoelectronic board
An Investigation of Passive Optical Networks for India Based Neutrino Observatory (INO)

Network configurations
Controller Area Network (CAN)
Optical CAN
Passive star optical network

Experimental results

Conclusion

Thank you
Power budget of optical CAN

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value of one unit</th>
<th>Total number of unit</th>
<th>Total loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector loss</td>
<td>0.1 dB</td>
<td>16</td>
<td>1.6 dB</td>
</tr>
<tr>
<td>Single mode fiber loss</td>
<td>0.35 dB/km</td>
<td>32 m</td>
<td>11.2 \times 10^{-3} dB</td>
</tr>
<tr>
<td>2 x 2 50:50 coupler typical insertion loss</td>
<td>3.4 dB</td>
<td>8</td>
<td>27.2 dB</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>28.81 dB</td>
</tr>
</tbody>
</table>