ARE WE READY WITH RPCS FOR ICAL?

B. Satyanarayana, TIFR, Mumbai
ICAL detector and construction

Magnet coils

RPC handling trolleys

Total weight: 50Ktons

4000mm × 2000mm × 56mm low carbon iron sheets
Factsheet of ICAL detector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of modules</td>
<td>3</td>
</tr>
<tr>
<td>Module dimensions</td>
<td>$16m \times 16m \times 14.5m$</td>
</tr>
<tr>
<td>Detector dimensions</td>
<td>$48.4m \times 16m \times 14.5m$</td>
</tr>
<tr>
<td>No. of layers</td>
<td>150</td>
</tr>
<tr>
<td>Iron plate thickness</td>
<td>56mm</td>
</tr>
<tr>
<td>Gap for RPC trays</td>
<td>40mm</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>1.3Tesla</td>
</tr>
<tr>
<td>RPC dimensions</td>
<td>$1,950mm \times 1,840mm \times 26mm$</td>
</tr>
<tr>
<td>Readout strip pitch</td>
<td>30mm</td>
</tr>
<tr>
<td>No. of RPCs/Road/Layer</td>
<td>8</td>
</tr>
<tr>
<td>No. of Roads/Layer/Module</td>
<td>8</td>
</tr>
<tr>
<td>No. of RPC units/Layer</td>
<td>192</td>
</tr>
<tr>
<td>No. of RPC units</td>
<td>$28,800 \ (97,505m^2)$</td>
</tr>
<tr>
<td>No. of readout strips</td>
<td>3,686,400</td>
</tr>
</tbody>
</table>

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
- Glass (bakelite) for electrodes
- Special paint mixture for semi-resistive coating
- Plastic honeycomb laminations as pick-up panel
- Special plastic films for insulation
- Avalanche (streamer) mode of operation
- Gas: R134a+Iso-butane+SF$_6$ = 95.5+4.2+0.3 (R134a+Iso-butane+Argon=56+7+37)
Construction of an RPC detector

- Signal reference plane
- Plastic honeycomb
- Copper pickup strips
- Graphite/Paint
- Top glass
- Button spacer
- Bottom glass
- Edge spacer
- Gas nozzle
- Bottom pickup panel

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Glass cleaning

- Cleaned with *Labolene* soap solution and rinsed with distilled water
- Left to natural drying
- Wiped with iso-propyl alcohol

Spray painting

- Using auto garage compressor and paint spray gun
- Left to natural drying
- Currently scaling-up an automated paint plant used for 1m x 1m glass
Surface resistivity measurement

Measurement jig
- Developed a simple technique
- Fabricated jigs of various sizes to suit for measurements of different grid sizes

Measurement data
- *Reasonably* uniform
- Needs improvement at the edges
- Better uniformity obtained on sheets painted by automatic paint plant

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Gas gap preparation-1

Bottom glass in place

- Template for button positions placed below the bottom glass
- Buttons placed on 20cm x 20cm grid

Gluing of buttons

- Currently glue dispensed manually
- Protective template placed on the glass
- Auto timer-based glue dispenser being designed
Gas gap preparation-2

Placing the top glass

- Tilting the work table for placing the top glass electrode
- Precise stoppers mounted on the table for guiding the top glass

Vacuum jig for gluing

- A simple vacuum jig designed for perfect and efficient gluing of the gas gap
- Technique suggested by Carlo Gustavino
Preparing to glue bottom-side

- Rotating the work table for gluing bottom-side spacers
- Suitable work-table design and over-head crane for easy handling of glasses and gaps

Ready to glue top-side spacers

- Last step before closing the gas gap
- Gas nozzles on all four corners of the gap – two each used for gas inlet and outlet
Leak testing the gap

- The gap pressurised marginally above atmosphere with R134a gas
- Tested for leaks with R134a leak detector
- Leaks plugged

Fully fabricated gas gap

- Gap ready to be assembled as an RPC detector chamber
RPC pulse height studies

Preamplifier pulse shots

Pulse height distribution

Mean pulse height from the RPC: 2.5-3mV

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Charge and time distributions

Charge

Timing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>tdc1</th>
<th>qdc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>5997</td>
<td>7426</td>
</tr>
<tr>
<td>Mean</td>
<td>601.1</td>
<td>55.78</td>
</tr>
<tr>
<td>RMS</td>
<td>21.48</td>
<td>30.58</td>
</tr>
<tr>
<td>χ^2 / ndf</td>
<td>543.1 / 168</td>
<td>1322 / 235</td>
</tr>
<tr>
<td>Prob</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Constant</td>
<td>121.1</td>
<td>157.4</td>
</tr>
<tr>
<td>Mean</td>
<td>602.2</td>
<td>50.26</td>
</tr>
<tr>
<td>Sigma</td>
<td>17.98</td>
<td>15.55</td>
</tr>
</tbody>
</table>

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Efficiency plateau

Noise rate profile

Monitoring operating parameters

B. Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
SF₆ studies: Chamber current

V-I characteristics

Chamber current

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
SF$_6$ studies: Collected signal charge

Charge distributions

Charge parameters
Efficiency

Noise Rate

SF₆ studies: Important operating parameters

B. Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
SF$_6$ studies: Timing characteristics

Time response

Time resolution

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Prototyping of ICAL detector

1mx1m RPC prototype stack

2mx2m RPC test stand

Industrial production of RPC

1mx1m ICAL prototype
Results from prototype stack

A muon track

Position residue plot

Tomography of RPC

Zenith angle distribution

Velocity plot

B.Satyanarayana, TIFR, Mumbai

Are we ready with RPCs for ICAL?

September 22, 2011
Features of ICAL FE ASIC

- IC Service: Europractice (MPW), Belgium
- Service agent: IMEC, Belgium
- Foundry: austriamicrosystems
- Process: AMSc35b4c3 (0.35μm CMOS)
- Input dynamic range: 18fC – 1.36pC
- Input impedance: 45Ω @350MHz
- Amplifier gain: 8mV/μA
- 3-dB Bandwidth: 274MHz
- Rise time: 1.2ns
- Comparator’s sensitivity: 2mV
- LVDS drive: 4mA
- Power per channel: < 20mW
- Package: CLCC48(48-pin)
- Chip area: 13mm²
High voltage for RPCs
- **Voltage:** 10kV (nominal for Glass, less for Bakelite)
- **Current:** 6mA (approx., 200nA per chamber)
- **Ramp up/down, on/off, monitoring**

Low voltage for electronics
- Voltages and current budgets still not available

Commercial and/or semi-commercial solutions
- **Buy supplies, design distribution (and control)?**

DC-DC and DC-HVDC converters; cost considerations
Cables and interconnects

- RPC to front-end boards – *the toughest*
 - Integration with pickup panel fabrication
- Front-end boards to RPC-DAQ board
 - LVDS signals (any alternatives?, prefer differential)
 - Channel address
 - Analog pulse
 - Power
- RPC-DAQ boards to trigger sub-systems
 - Four pairs, Copper, multi-line, flat cable?
- RPC-DAQ boards to back-end
 - Master trigger
 - Central clock
 - Data cable (Ethernet: copper/fibre, …)
Total number of RPCs in ICAL = \(3 \times 150 \times 64 = 28,800\)
Total gas volume = \(28,800 \times 184\text{cm} \times 184\text{cm} \times 0.2\text{cm} = 195,010\) litres

For example:
One volume change/day with 10% gas top-up in a re-circulating scheme
Approximate running gas cost = Rs 30,000/day (R134a from Mafron)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Avalanche (%)</th>
<th>Streamer (%)</th>
<th>Maximum (%)</th>
<th>Volume (L)</th>
<th>Density (g/L)</th>
<th>Weight (Kg)</th>
<th>Cost (Rs/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon</td>
<td>0.0</td>
<td>30.0</td>
<td>30.0</td>
<td>58,503</td>
<td>1.784</td>
<td>104.4</td>
<td></td>
</tr>
<tr>
<td>R134a</td>
<td>95.5</td>
<td>62.0</td>
<td>95.5</td>
<td>186,234.6</td>
<td>4.25</td>
<td>791.5</td>
<td></td>
</tr>
<tr>
<td>Isobutane</td>
<td>4.3</td>
<td>8.0</td>
<td>8.0</td>
<td>15,600.8</td>
<td>2.51</td>
<td>39.16</td>
<td></td>
</tr>
<tr>
<td>SF(_6)</td>
<td>0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>390</td>
<td>6.164</td>
<td>2.40</td>
<td></td>
</tr>
</tbody>
</table>
Sealed gas test for C217 stack

- Stack of 12 1m×1m RPCs
- L0, L4 and L11 were used as reference
- Other RPCs sealed on April 27, 2010

Summary of the study

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Layer No</th>
<th>RPC Name</th>
<th>Sealing date</th>
<th>Gas flow restarted</th>
<th>No of days sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L00</td>
<td>AB06</td>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>L01</td>
<td>AB07</td>
<td>27-Apr-10</td>
<td>19-Jul-10</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>L02</td>
<td>AB10</td>
<td>27-Apr-10</td>
<td>19-Jul-10</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>L03</td>
<td>AB11</td>
<td>27-Apr-10</td>
<td>31-May-10</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>L04</td>
<td>AB09</td>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>L05</td>
<td>IB02</td>
<td>27-Apr-10</td>
<td>19-Jul-10</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>L06</td>
<td>AB02</td>
<td>27-Apr-10</td>
<td>29-May-10</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>L07</td>
<td>AB01</td>
<td>27-Apr-10</td>
<td>29-May-10</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>L08</td>
<td>AB03</td>
<td>27-Apr-10</td>
<td>19-Jul-10</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>L09</td>
<td>AB04</td>
<td>27-Apr-10</td>
<td>29-May-10</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>L10</td>
<td>AB12</td>
<td>27-Apr-10</td>
<td>28-May-10</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>L11</td>
<td>AB08</td>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
A = Sealed (L05, L06) B = Flow started (L06) C = Flow started (L05)
Closed loop recirculation system

SECTION (A)
- P1-Bellow pump
- Vacuum & flow controller Valve
- Receiver Tank 5L

SECTION (B)
- Continuous duty Purifier for removal of Moisture, Fluorocarbon radicals
- Precision Vacuum Sensor
- Buffer Tank 15L

SECTION (C)
- Calibration Bypass Valve

SECTION (D)
- Compound digital Pressure gauge
- Pressure and flow controller
- Electropneumatic Isolation Valves
- Flow Direction
- Safety Bypass line with Isolation valves
- RPC Detector stack, 2m x 2m, 12 nos

SECTION (E)
- Backpressure Pressure controller Valve
- Vent flow & pressure controller valve
- Vent (Exhaust)

B. Satyanarayana, TIFR, Mumbai
Are we ready with RPCs for ICAL?
September 22, 2011
Issues on RPC gap production
- Size, glass coating technique, high voltage contact

Pickup panel optimisation
- Cost, thickness, fire safety issue

RPC unit integration issues
- Electronics, gas, cooling, support structure

Industrial procedure optimisation
- Spacer & button gluing, curing, QC scheme

Large scale industrial production
- Many local industries are interested and getting involved

Gas system/flow optimisation
- Recycling system, flow control, optimisation, monitoring